
POSTER 2008, PRAGUE MAY 15 1

Accelerometer Based Real-Time Gesture Recognition

Zoltán PREKOPCSÁK1

1Dept. of Telecomm. and Media Informatics, Budapest University of Technology and Economics, Magyar tudósok krt. 2.,
H-1117 Budapest, Hungary

prekopcsak@tmit.bme.hu

Abstract. Gesture is a natural expression form for humans,
but its recognition is a similarly hard problem as speech
recognition. In this paper, I present a real-time hand ges-
ture recognition system, which identifies relevant parts in the
continous sensor data stream, and classifies them to the most
probable gesture.
Instead of the usual button-based segmentation, I have cre-
ated an automatic segmentation method, which makes the
interface more natural. The results showed that the two dif-
ferent classifiers reach 97.4% and 96% accuracy on a per-
sonalized gesture set, and these results can be improved for
certain gesture sets with the combination of the two algo-
rithms. Furthermore, the system has great performance and
low response time, so the user experience is much better than
with previous gesture recognizers.

Keywords
Gesture recognition, classification, accelerometer sen-
sor, human-computer interaction.

1. Introduction
Hand gesture recognition is a discipline that has been

around for decades in the human-computer interaction re-
search community. Its prototypes range from special ap-
plications like sign language interpretation [13] to general
gesture recognizers, and they provide various hardware and
software solutions for capturing and processing human hand
motion. Lately, the Nintendo Wii game console popularized
the concept with its gesture-based controller. Using Wii Re-
mote and Nunchuk, games can be controlled by natural ges-
tures which made the console very popular, especially for
sports games.

In the last few years, the fast development in sensor
technology made it possible to put small accelerometer sen-
sors into everyday devices. The Wii Remote uses these sen-
sors to recognize hand gestures, and there are many mobile
phones on the market that also have in-built accelerometers.
The main advantage of using these sensors instead of vision-
based methods is that the interface is not limited to a con-
trolled environment.

One of the most important visions of computer sci-
ence is ubiquitous computing, which involves ambient intel-
ligence built into our surroundings. To reach this vision, we
need intuitive interfaces using speech, touch and gestures.

2. Related Works
The first dynamic gesture recognition system was cre-

ated by Hofmann et al. in the middle of 1990s. They have
used dimensionality reduction and discrete hidden Markov
models (HMM) to reduce complexity, but recognition took
hours to complete [4]. Other researchers developed simpler
task-specific recognizers which could operate in almost real-
time mode, but these systems cannot be used in general cases
[7][1].

Researchers from the Technical Research Centre of
Finland (VTT) have published several articles in the past
few years about general dynamic gesture recognition, mainly
for mobile phone interaction. They have created a hardware
module for capturing hand movements called SoapBox [12],
and they have found that left-to-right HMMs provide very
accurate models [8].

Although gesture-based games spread fastly all around
the world, there has been very few comprehensive studies
about everyday use of gesture interfaces from the design per-
spective. Korpipää et al. have created a context-aware in-
terface prototype that included hand gesture recognition for
smart phones, but the rule-based setup concept was quite
complicated for first-time users. Their earlier works in-
cluded more prototypes for specific applications [6].

My research lies in the intersection of the technical and
design perspectives, as I have identified basic design prin-
ciples, and created new segmentation and modified classi-
fication methods to satisfy them. This paper describes the
research from the technical point-of-view, so for design as-
pects, please read my earlier paper [10].

3. System Overview
A gesture recognizer prototype was created for testing

purposes. The input device was a Sony-Ericsson W910i mo-



2 Z. PREKOPCSÁK, ACCELEROMETER BASED REAL-TIME GESTURE RECOGNITION

bile phone which has in-built three-dimensional accelerom-
eter accessible from Java environment. The application col-
lects the accelerometer sensor data stream and sends it to a
computer nearby via Bluetooth connection. All other com-
ponents are realized on the computer, but with great respect
to low usage of resources, so they can be implemented to the
mobile environment too.

Fig. 1. System block diagram with major components.

When the data stream arrives to the computer, it passes
through a segmentation module which identifies the begin-
ning and the end of gestures. Only the segmented parts are
forwarded to the next component. In case of teaching, the la-
belled gesture examples are just saved for future use. In case
of recognition, it is passed to the classifier component, which
includes noise filtering and identifies the most probable ges-
ture. Depending on the gesture and the context we can define
actions, so the gesture recognizer prototype can be used as an
interface for mobile phones or computer applications. In the
next subsections, I will describe these components in more
detail.

3.1. Segmentation

Most gesture recognizer systems use button-based seg-
mentation, which means that the user needs to sign the be-
ginning and the end of the gesture by pushing a button. I
have decided to create an automatic segmentation method
without any buttons, which results more natural interaction.
A similar approach was used by Hofmann et al. [4].

The accelerometer sensor provides about 25 three-
dimensional data vectors every second. The role of the seg-
mentation is to identify the parts in this data stream where
gestures occur. To be able to solve this problem, we need the
definition of gestures. In my work, I have used the following
largely technical definition: a gesture starts with rapid ac-
celeration, continuously changes directions during gestures,
ends in almost steady position, and lasts more than 0.8 sec-
onds. This definition was selected after the extensive study
of the data stream of different hand gestures.

To capture gestures according to the definition, we
need to do some preprocessing on the three-dimensional data
stream. First of all, the definition includes statements about
the changing property of acceleration, so the derivative is
used, which is the difference between two consecutive ele-
ments in the discrete case. Second, the size of the vector
is computed, because the system should be invariant to the
order of axes.

Hk =
√

(xk − xk−1)2 + (yk − yk−1)2 + (zk − zk−1)2
(1)

This value can sign changes in acceleration and direc-
tion too, but it is very hectic so a moving average should
be used. I have selected the exponential moving average
(EMA), because it is fast and memory efficient.

EMAHk
= αHk + (1− α)EMAHk−1 (2)

I have tried several values for α, and the value 0.2 re-
sulted smooth curves without averaging too many values.
After these computations, the segmentation is as simple as
monitoring a threshold on EMAHk

. While the value is over
the threshold, a gesture is captured. User tests proved that
this segmentation method can capture dynamic gestures, and
it feels natural to use them without buttons.

3.2. Gesture recognition

The output of the segmentation is a variable, but finite
length vector containing three-dimensional elements, so it
is a matrix sized 3 × k. In teaching mode it is saved to the
filesystem with the appropriate label attached. In recognition
mode we need to decide if the matrix is very similar to one of
the gestures. Two different classification methods have been
implemented for this problem.

Hidden Markov Models

HMM is a statistical modeling tool that can be applied
for modeling time-series with spatial and temporal variabil-
ity [5]. As I mentioned earlier, it is frequently used for ges-



POSTER 2008, PRAGUE MAY 15 3

ture recognition, but it has numerous applications in speech
recognition too. My algorithm was based on a recent Nokia
Research Center paper [11] with some modifications. I have
used the freely available JAHMM library for implementa-
tion.

Fig. 2. Left-to-right hidden Markov model with four states

Continuous left-to-right HMMs have been created with
8 states for each gesture. Previous papers used to apply di-
mensionality reduction to reduce complexity, but it causes
loss of information and current systems are able to han-
dle this complexity in real-time. Pylvänäinen showed that
no transformations are needed on the input data, as it is
suited for the HMM technique in its raw format[11]. HMMs
were trained with the iterative Baum-Welch algorithm and
forward-backward algorithm was used for recognition. I do
not explain these standard algorithms in this paper, but they
can be found elsewhere [3].

In the recognition step, we calculate the probability of
all gesture models for a given movement and select the most
probable one. As the automatic segmentation also produces
some noise movements, we need to include a probability
threshold and below that we consider the movement being
noise. If the threshold is too high then many real gestures
will be considered noise and if it is too low then noise move-
ments will be misclassified. Its value was determined ac-
cording to test results.

Support Vector Machine

Support Vector Machine (SVM) is a supervised linear
classification method that has the great property of maximiz-
ing margins between classes. It also has non-linear exten-
sions in the form of kernel functions [2]. I have used the
open-source LIBSVM package for implementation.

To use the SVM, we need to transform the 3 × k ma-
trix to a fixed length vector. In this case, the matrices were
transformed to a 10-dimensional vector with basic statistical
elements like minimum, maximum, mean, length, etc. These
statistical values describe the direction and dynamics of the
gesture. To make all dimensions equal, z-normalization have
been used:

x′i =
xi − x̄

σ
(3)

where x̄ is the mean and σ is the variance.

I have used the linear kernel with all gesture examples
for teaching. During recognition, the incoming movement
should be transformed and normalized the same way like the
gesture examples, and then the SVM decides which gesture
it belongs to.

3.3. Action selection

In the system prototype, there is a possibility to prede-
fine actions for each gestures. These actions can be runnable
scripts or applications on the computer, or even the mobile
phone can be controlled via Bluetooth serial connection. AT
modem commands can simulate key-presses on the mobile
phone, so we can navigate and reach regularly used menu
items by doing gestures. It works like a perfect mobile ges-
ture interface in the Bluetooth range of the computer.

The above described algorithms are all designed for
low resource usage, so they can be implemented to the mo-
bile phone. In this case the gesture interface works without
computers.

4. Results
To test the accuracy of the recognition, a dataset of ges-

tures have been created. I have defined 10 different gestures,
half of them are hand movements using mainly the wrist, and
half of them are wider arm movements. The gestures were
repeated 10 times by four different users, which provided
400 examples overall.

Part of these examples were used to train the models
and the other part was used for testing. In every test, cross-
validation was used to produce reliable results. We have also
recorded 50 noise examples that were captured by the seg-
mentator.

4.1. Accuracy of the classifiers

The accuracy greatly depends on the number of ges-
ture examples used for teaching. The more examples we
have, the more accurate the model will be. Both algorithms
have been tested with different number of teaching exam-
ples, which is denoted by N .

Hidden Markov Models

HMMs are able to filter movements that are not sim-
ilar to predefined gestures. However, some noise still gets
misclassified to a gesture. These are called false positives,
while the real gestures that get filtered out, are called false
negatives. As it can be seen on Table 1, noise filtering is



4 Z. PREKOPCSÁK, ACCELEROMETER BASED REAL-TIME GESTURE RECOGNITION

around 95% accurate, and recognition rate also rises above
95% in most cases with 4 teaching examples already. In case
of 8 teaching examples, the HMM algorithm results 97.4%
accuracy on average.

User Accuracy Noise
N=2 N=4 N=8 filtering

U1 93.69% 97.69% 98.44% 94.1%
U2 91.25% 97.63% 98.44% 94.54%
U3 95.86% 99.53% 100.0% 96.46%
U4 82.64% 90.94% 92.67% 96.8%

Tab. 1. Accuracy of the HMM model for different users. N is
the number of teaching examples.

Support Vector Machine

There is no noise filtering included in the SVM, so false
positives and false negatives never occur. The SVM per-
forms very well for low values of N , but it fails to improve
as fastly as the HMM. In case of 8 teaching examples, the
SVM algorithm results 96% accuracy on average.

User Accuracy
N=2 N=4 N=8

U1 97.44% 98.29% 99.0%
U2 98.94% 99.24% 99.0%
U3 84.58% 90.59% 95.0%
U4 84.33% 87.9% 90.67%

Tab. 2. Accuracy of the SVM model for different users. N is the
number of teaching examples.

Fig. 3. Accuracy curves for different users and methods. The
more teaching examples we have, the more accurate the
model will be.

4.2. Error analysis

It is interesting to investigate the typical errors of the
classifiers. The SVM and HMM classifiers have some mis-
classification errors that might be corrected with the combi-
nation of the two algorithms. Table 3 shows misclassifica-

tions where the error rate is above 0.5%. It can be seen, that
there is an overlap between the errors, but in some cases only
one classifier makes the mistake, so the recognition rate can
be improved by the combination of the two algorithms.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G1 -
G2 - ©
G3 -
G4 - ©
G5 - × × ×
G6

⊗
- ×

G7 × -
G8

⊗ ⊗
× - ×

G9 -
G10 × × × -

Tab. 3. Confusion matrix for gestures. The © marks typical
errors by HMM and the × marks misclassification by
SVM.

HMMs have false positives and false negatives too. The
number of false positives and negatives can be adjusted by
setting the probability threshold in the HMMs. When raising
it higher, there will be more false negatives and less false
positives, and vice versa when lowering the threshold.

4.3. Runtime analysis

Runtime was tested on a new generation MacBook
computer with a dual core 2 GHz processor and 1 GB mem-
ory. The software was developed and tested in the Eclipse
3.3 environment, Java 1.5 platform and Mac OS X 10.4 op-
erating system. Tests were made for the teaching and the
recognition phase separately. Measurements were repeated
10 times, the smallest and biggest values threw out, and av-
eraged on the remaining 8 values.

Teaching time turned out to be linearly dependent from
the number of teaching examples. HMMs were trained in
46ms for one example and 324ms for nine examples. These
values were 11ms and 39ms for SVM. Recognition time
was independent from the number of teaching examples and
averaged at 3.7ms for HMM and 0.4ms for SVM.

On mobile platforms, these values are expected to rise
with an order of magnitude, which results a few seconds
of startup time, but the recognition time will be far below
100ms, which is the threshold for real-time interfaces [9].

5. Conclusion
In this paper, I have presented and evaluated a hand

gesture interface prototype which could be used in industrial
applications. The gesture set is completely personalizable,
so everyone can use the gestures that he/she feels natural for
a certain function. Instead of using button-based segmenta-
tion I have implemented an automatic segmentation method
with which the interface is easier to use.



POSTER 2008, PRAGUE MAY 15 5

I have created two classification algorithms that pro-
vided 97.4% and 96% accuracy respectively. The HMM
classifier is able to filter more than 95% of noise movements.
The system has great performance and low response time,
and the user experience is much better than with previous
gesture recognizers.

Acknowledgements
Most of the research described in the paper was spon-

sored by Kitchen Budapest and I thank all the researchers
and coordinators for their continuous support. I also thank
my supervisors, Csaba Gáspár-Papanek and Péter Halácsy,
for their helpful discussions about this research.

References
[1] BENBASAT, A.Y., PARADISO, J.A. An inertial measurement frame-

work for gesture recognition and applications. Gesture and Sign Lan-
guage in Human-Computer Interaction, International Gesture Work-
shop, 2001.

[2] BURGES, C.J.C. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 1998, vol. 2, no.
2, p. 121 - 167.

[3] DUGAD, R., DESAI, U.B. A tutorial on hidden Markov models. In-
dian Institute of Technology, 1996.

[4] HOFMANN, F.G., HEYER, P., HOMMEL, G. Velocity profile based
recognition of dynamic gestures with discrete hidden Markov models.
Gesture and Sign Language in Human-Computer Interaction, 1997,
p. 81 - 85.

[5] KALLIO, S., KELA, J., MÄNTYJÄRVI, J. Online gesture recogni-
tion system for mobile interaction. IEEE International Conference on
Systems, Man and Cybernetics, 2003.

[6] KORPIPÄÄ, P. et al. Customizing user interaction in smart phones.
IEEE Pervasive Computing, 2006, vol. 5, no. 3, p. 82 - 90.

[7] LOVELL, S.D. A System for Real-Time Gesture Recognition and
Classification of Coordinated Motion. Massachusetts Institute of
Technology, 2005.

[8] MÄNTYLÄ, V.M., MÄNTYJÄRVI, J., SEPPÄNEN, T., TUULARI,
E. Hand gesture recognition of a mobile device user. IEEE Interna-
tional Conference on Multimedia and Expo, 2000.

[9] NIELSEN, J. et al. Usability Engineering. Morgan Kaufmann, 1994.
[10] PREKOPCSÁK, Z. Design and development of an everyday hand ges-

ture interface. MobileHCI 2008 (pending), Amsterdam (The Nether-
lands), 2008.

[11] PYLVÄNÄINEN, T. Accelerometer based gesture recognition using
continuous HMMs. Lecture Notes in Computer Science (IbPRIA 2005
Proceedings), 2005, p. 639 - 645.

[12] TUULARI, E., YLISAUKKO-OJA, A. SoapBox: A platform for
ubiquitous computing research and applications. Lecture Notes in
Computer Science, 2002, vol. 2414.

[13] VOGLER, C., METAXAS, D. A framework for recognizing the si-
multaneous aspects of American sign language. Computer Vision and
Image Understanding, 2001, vol. 81, no. 3, p. 358 - 384.

About Authors. . .

Zoltán PREKOPCSÁK was born in Budapest, Hungary.
He is an information technology student at Budapest Uni-
versity of Technology and Economics specializing in data
mining, machine learning and human-computer interaction.
He is a researcher at the Kitchen Budapest medialab, and he
participates in university research projects. Beyond being a
student and a researcher, he works for a web startup com-
pany.


