
Software Test Effort Estimation Methods

Matthias Kerstner

February 2, 2011

Abstract

Especially in the field of software engineering, effort estimation plays an essential role. Moreover,
the task of defining test scenarios and test cases is often underestimated during the early stages of the
software engineering process, due to the fact, that the amount and granularity of required test cases
and test steps is not known in advance, for instance, as a result of missing or incomplete requirement
specifications. Furthermore, the fact that fix price projects are becoming more and more common makes
the process of prior (test) effort estimation even more important, in order to not exceed the budget agreed
upon. This paper discusses three important aspects of this development. First, it elaborates on the
changing practices in project pricing, followed by a discussion of the general problems involved in the
field of effort estimation in software projects. Finally, a distinct selection of today’s commonly used
methods for test effort estimation will be presented: Function Point Analysis, Test Point Analysis and
Use Case Points.

Keywords: Software Effort Estimation, Test Effort Estimation Methods, Function Point Analysis, Test
Point Analysis, Use Case Points
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1 Introduction

In general, the software engineering process represents a complex and often rather long-lasting endeavor.
Consequently, the need for clear a and thoroughly documented list of (functional) requirements is essential
for estimating the effort needed to complete this process, i.e. to produce the final product. Thus, the total
cost estimation that will be agreed upon by the partners involved must be as accurate as possible to ensure
a project’s economic survival. The fact that more than 60% of today’s software projects done in Europe are
fixed price projects [Sne07], draws further attention on the effort estimation problem.

Moreover, commonly used software development models, such as the V-XT model1, developed and man-
aged by the Industrieanlagen-Betriebsgesellschaft mbH (IABG2), add additional constraints to this problem.
This is due to the fact, that these models often do not provide fine grained enough means to be able to achieve
thoroughly complete requirement documents at the early stages in which they are originally produced with
respect to their corresponding development process. For instance, according to [Sne07], using the V-XT
model effort estimations are primarily based upon the requirements specification (“Lastenheft”), written by
the project’s applicant, which especially for more complex applications cannot be regarded as completely
accurate in the sense of that it contains every possible requirement combination.

Consequently, when using the V-XT model, [Sne07] argues that effort estimations exclusively based
upon the requirements specification document produced by the applicant at a very early stage in the soft-
ware development process can at no means lead to accurate estimation results. He backs up his statement by
adding, that in the V-XT model requirements specification documents, as opposed to being complete, merely
represent an applicant’s “wish list”, containing a list of functional requirements, as well as qualitative prop-
erties, i.e. compliance to the user requirements. Furthermore, he states, that currently no effort estimation
method exists that is solely based upon the limited set of these attributes. Therefore, [Sne07] concludes, that
the detailed information needed for accurate effort estimations is actually provided in form of the functional
specification document (“Pflichtenheft”) written by the contractor, solely based upon the requirements spec-
ification document. Unfortunately, at the point of the publication of the functional specification document,
the contract has already been signed by the parties, thus the price has been fixed.

1.1 Effort Estimation

Consequently, independent of the estimation method used to calculate the effort needed, the more detailed
the information provided is, the more accurate the estimation will be. Function-point, object-point, use
case-point, COCOMO-I & II or even domain expert knowledge, all methods for effort estimation share the
same need for information in order to be able to produce accurate results. Hereby, all estimation methods
are based upon the five core metrics introduced by [LPM03], as depicted in Figure 1. These are

1. Quality

2. Quantity

3. Time

4. Costs

5. Productivity
1See http://www.v-modell.iabg.de/
2See http://www.iabg.de/
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Figure 1: The Devils Square (reproduced from [BD08])

The resulting “devil’s square”, as shown in Figure 1, depicts the problem of finding the best fitting
combination of these factors. Hereby, productivity is a constant, that is fixed for a company at the time of
a project. Quantity represents the “size” of a project. In terms of software, there are a variety of possible
metrics available to measure its size, for instance, lines of code (LOC), function-points or use case-points.
The final choice depends on the data available, such as data-flow diagrams for function-points or UML
diagrams for object-points. In software engineering, quality is represented as the metric of compliance to
user requirements. Thus, in order to be able to measure quality, the degree of conformance must previously
be made quantifiable. Costs on the other hand are calculated using a rather trivial estimation function, based
on the product of quantity and quality, divided by the corresponding productivity. Finally, time is expressed
as a logarithmic function based on the effort.

1.2 Cone Of Uncertainty

As already mentioned before, a crucial level of information is needed to achieve meaningful estimations.
Unfortunately, especially at early stages in the development process, estimations may not be as precise as
they should be. This fact is also referred to as the “Cone of Uncertainty”. The idea goes back to a study
by NASA showing that estimation calculations done at the beginning of the project’s life cycle suffer from
a very high uncertainty factor that steadily decreases during the progress of the project. Figure 2 shows a
highly simplified version of the cone of uncertainty. It describes the fact, that the uncertainty factor changes
over the period of time a project lasts. Hereby, the factor gradually decreases over time from initially four
to zero at the end of the project’s life cycle, forming a cone-like structure.

As a consequence, it once again has to be stated, that effort estimations, normally done at early stages
of the project life cycle, will contain a certain inaccuracy factor. Moreover, when it comes to specifying
test requirements (test cases, test steps, etc.) that are structured and designed according to the (incomplete)
functional requirements specifications, the problem of uncertainty unveils itself once again. Therefore, a
whole set of test effort estimation methods exist, that try to accurately estimate to amount of work needed
(i.e. the costs), to thoroughly test a system, based on the functionality initially specified. The upcoming
section focuses on the crucial aspect of test effort estimation by elaborating on a distinct set of test effort
methods commonly used in practice.
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Figure 2: Cone of Uncertainty [Coo03]

Figure 3: The V-XT Model (reproduced from [Sne07])

2 Test Effort Estimation Methods

Especially in the field of software engineering, the process of testing plays a crucial part to ensure a high level
of quality [AB07]. According to [Rub95], testing activities make up 40% of the total software development
effort, as depicted in Figure 4. The fact, that conventional estimation techniques tend to put a large focus only
on the actual development effort instead of including the broad range of additional activities involved, such
as the crucial process of testing the software, adds further complications to achieve accurate overall effort
estimations. According to [Nag01], this problems is based on the fact, that when techniques for estimating
development effort evolved, the concept of estimating test-engineering time was completely overlooked.

Independent of the size of the software to be tested, certain preconditions must be met in order to be able
to design appropriate test cases to achieve a (guaranteed) level of code coverage. Thus, as already mentioned
in section 1, requirement specifications must be as detailed as possible to ensure a high level of testability.
Furthermore, in order to be able to estimate the effort needed to design, implement and execute these tests
special methods are needed. This section is dedicated to discuss a distinct selection of test effort estimation
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Figure 4: Effort Distribution in Software Projects [Nag01]

methods commonly used in practice. First, function point analysis (FPA) will be discussed, followed by test
point analysis (TPA), which uses metrics generated by function-point analysis and finally use case-points
(UCP).

2.1 Function Point Analysis

Since its publication, function point analysis has proven to be a reliable method for measuring the size of
software, thus providing test designers, as well as project managers with a solid tool to estimate the efforts
needed. According to [Hel03], apart from purely measuring its output (i.e. un-/adjusted function points),
FPA additionally is extremely useful in estimating project efforts, managing change of scope, measuring
productivity, as well providing means for communicating functional requirements.

In contrast to other test effort estimation methods, FPA was initially designed to be used from the user’s
point of view. The designers had realized, that the best way to gain an understanding of the users’ needs
was to approach the problem from their perspective and how they viewed and interpreted the results an
automated system produces [Hel03]. Consequently, FPA’s evaluation mechanism is based upon the ways
users interact with the system’s capabilities. Hereby, software systems provide users with a distinct set of
five basic functions, in order to do their jobs. These functions are separated into two different categories:

1. Data Functions

2. Transactional Functions

Whereas data functions address the user’s data requirements, that in return can be divided into the sub-
categories internal logical files (ILF) and external interface files (EIF), transactional functions cope with the
user’s need to access data through either external inputs (EI), external outputs (EO) and external inquiries
(EQ) [Hel03]. Apart from these five functional components there exist two so-called adjustment factors
needed to calculate the actual FP, the first being the functional complexity and the second the value adjust-
ment factor (VAF). The functional complexity represents the complexity of a single parameterized function
(i.e. a test step), that is determined by a combination of the amount of data fields and their corresponding
data types [Pil10], as shown in Figure 6.

Thus, for every of the five basic function types described above (ILF, EIF, EI, EO, EQ) there exists a
complexity matrix, consisting of the distinct combination of its input parameters, resulting in a complexity
rating ranging from low to high. The sum of the individual functional complexity based on these calcula-
tions, gives the so-called sum of unadjusted function points (UFP), as shown in Figure 5. Finally, using the
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Figure 5: Sample Calculation of UFP in FPA [Pil10]

Figure 6: Functional Complexity Rating Schema in FPA [Pil10]

VAF, that considers a system’s technical, as well as operational characteristics, the FP can be calculated,
using the following formula: FP = UFP ∗ V AF . Hereby, the VAF itself consists of 14 individual fac-
tors, also called the total degree of influence (TDI) [Pil10], which amongst others are represented by data
communication, distributed functions, performance and the complexity of data processing.

Unfortunately, FPA also has its drawbacks. According to [Nag01], one of FPA’s crucial pitfalls is the
fact, that it needs very detailed requirements to produce accurate results. As already mentioned earlier,
requirement specifications tend to not be as complete as they should be. Thus, this leaves room for further
improvement.

In his paper, [Pil10] suggested a three spreadsheet approach to estimate the test automation effort using
FPA and TPA. Whereas the first two spreadsheets are used to collect all required test steps, in order to
determine the rate of test step re-usability, as well as to actually calculate the resulting FP respectively, the
third sheet uses the data from the previous FPA to determine the TP. The upcoming section 2.2 will discuss
in TPA in greater detail.
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2.2 Test Point Analysis

Test point analysis (TPA) represents a test estimate preparation technique that can be used to objectively
prepare estimates for system- and acceptance tests [vVCD99]. However, it is important to note that TPA
itself only covers black-box testing. Thus, it is often used in conjunction with FPA, that in return does
not cover system- and acceptance tests. Consequently, FPA and TPA merged together provide means for
estimating both, white- and black-box testing efforts. Furthermore, according to [vVCD99], TPA also offers
the possibility to determine the relative importance of the functions to be tested, so that the available testing
time can be used as efficiently as possible.

As mentioned earlier in section 2.1, [Pil10] used a three spreadsheet approach incorporating FPA and
a consecutive TPA to estimate test automation efforts. Based on the metrics derived from FPA (UFP, VAF
and finally FP), [Pil10] then was able to determine the corresponding amount of TP. Generally speaking,
the factors involved in determining the TP are rather wide-ranging. Thus, there are a lot of dependent
and independent factors that need to be taken into account. Figure 7 depicts the primary factors and steps
involved in the procedure of calculating the amount of TP, which eventually leads to the total amount of
test hours estimated. Since TPA is based upon the principles of a black-box test, formulating an estimate
requires knowledge of three basic elements [vVCD99]:

1. Size of the software system

2. Test strategy

3. Level of Productivity

Basically, out of the first two factors the volume of test work required can be calculated, expressed in
TP. Through a simple multiplication using the third factor, the level of productivity, the estimated amount
of hours needed can be determined. Using TPA, the size of a software system is approximately equivalent
to the amount of FP previously calculated through FPA. Nevertheless, again certain factors need to be taken
into account, that have alternating influences on the testing size [vVCD99], as opposed to the amount of FP.
These factors are complexity, interfacing and uniformity.

The second factor, the test strategy specifies which quality characteristics are going to be tested for each
function, as well as the degree of coverage. Hereby, more important functions and characteristics are going
to be tested more intensively, thus increasing the testing volume as such. Therefore, it is important to note,
that [vVCD99] recommends to determine the importance of these characteristics in conjunction with the
client to achieve a maximum level of testing conformance. [vVCD99] further differentiates between two
factors that influence the thoroughness of testing in accordance with the client:

1. User-importance

2. User-intensity

Whereas the factor user-importance denotes the level of significance of a particular function, the user-
intensity describes its level of usage. Thus, whereas a function that is going to be used throughout the day
is characterized as more important by the user, a function that is used very rarely will not be marked a high
priority. The same principle can be applied to the user-intensity factor.

Finally, the level of productivity is defined as the amount of time needed to realize a single test point,
as determined by the test strategy and the system’s size. Hereby, productivity itself is composed of two
components, the productivity figure and the environmental factor, as shown in Figure 7. The productivity
factor is specific to the individual organization, represented by the knowledge and skill of the test team.
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Figure 7: Overview of Test Point Analysis procedure [vVCD99]

On the other hand, the environmental factor describes the external influence of the environment on the test
activities, including the availability of test tools, the level of the team’s experience with the test environment,
the test basis’ quality as well as the availability of testware.

Thus, the overall procedure behind TPA, as depicted by Figure 7, is based upon the following steps
[vVCD99]. First, the amount of dynamic test points have to be calculated, as the sum of the TP assigned
to all functions. Hereby, TP are calculated for each individual function using the amount of FP, function-
dependent factors (user-importance, user-intensity, complexity, uniformity and interfacing), as well as qual-
ity requirements. Secondly, the static test points are a result of determining the number of test points required
to test static measurable characteristics. The total amount of TP is the sum of dynamic and static TP.

Following, the amount of primary test hours can be calculated using the following formula:
∑

(TP ) ∗
environmentalfactor ∗ productivityfactor. According to [vVCD99], the primary test hours represent
the volume of work required for the primary testing activities, represented by the amount of time required
to complete the preparation, specification, execution and completion test phases. Finally, in order to get to
the total amount of estimated test hours, the volume of work needed for additional management activities
needs to be taken into account. The magnitude of these secondary test activities primarily depends on the
availability of management tools, as well as the size of the test team. All in all, [vVCD99] states, that the
resulting total amount of test hours represents an estimate of the total time needed for the entire set of testing
activities, excluding process of formulating of the test plan.

Concluding, it has to be said, that since TPA is based on the results of FPA, it also inherits its drawbacks.
As already discussed in section 2.1, FPA requires thoroughly detailed requirement specifications to produce
accurate results. Furthermore, according to [Nag01], modern object-oriented systems are often designed
with use cases in mind. Consequently, FPA and TPA cannot be used in these cases. This is were use case
points (UCP) come into play. This test effort estimation method will be discussed in the upcoming section
2.3.

2.3 Use Case Points

In contrast to FPA and TPA, test effort estimation using UCP is based upon use cases (UC). [Coc00] defines
UC as a system’s behavior under various conditions, based on requests from a so-called “primary stake-
holder”, i.e. one of the stakeholders. Thus, UC capture contractual agreements between these stakeholders
about the system’s behavior. Hereby, the main goal is to honor and protect the interests of all stakehold-
ers involved. Furthermore, by collecting all possible behavioral sequences, based on requests submitted
to the system, UC also capture the wide range of scenarios possible. So, according to [Coc00], UC basi-
cally represent what users want from a system. [Nag01] states, that the V-model should be the life cycle
model of choice, due to the fact, that for each development activity it clearly associates a corresponding
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Figure 8: The V-Model [Nag01]

testing activity, as shown in Figure 8. Thus, subsequent steps involved in this model ensure that the required
test documentation is complete and comprehensive. According to [Nag01], when developing an estimation
method that is placed after the operational/business needs have been defined (see Figure 8), it becomes
obvious that UC will serves as its corresponding input.

Thus, the primary task of UCP is to map use cases (UC) to test cases (TC) [Nag01]. Hereby, each
scenario together with the corresponding exception flow for each UC serves as input for a specific TC.
Basically, the amount of test cases identified through this mapping results in the corresponding test effort
estimation. According to [Nag01], UCP is comprised of six basic steps that determine a project’s required
test effort:

1. Calculate unadjusted actor weights (UAW)

2. determine unadjusted UC weights (UUCW)

3. compute unadjusted UC points (UUCP)

4. determine technical and environmental factors

5. calculate adjusted UCP (AUCP)

6. compute final effort

The first step takes care of calculating the UAW, which is the sum of all actors multiplied by the so-
called corresponding actor weights, based on the actor type, as shown in Figure 9a, using the formula
UAW = AW ∗ actortype. Hereby, actor types range from simple to complex. Secondly, the amount of
UC need to be identified in order to determine the corresponding UUCW, which is represented as the sum
of all UC multiplied by a weight factor depending on the number of transactions or scenarios, using the
following formula: UUCW =

∑
(UC ∗ UCW ). Afterwards, based on the UAW and UUCW, the UUCP

can be calculated using UUCP = UAW +UUCW . Based on the technical complexity factor (TCF) listed
in Figure 9c, the so-called technical and environmental factors (TEF) can be determined, as the sum of the
products of weights and assigned values (giving the extended value): TEF =

∑
(W ∗ AV ). In the fifth

step, the AUCP is calculated based on the formula: AUCP = UUCP ∗ (0.65∗ (0.01∗TEF )). Finally, the
estimated test effort using UCP can be calculated as a multiplication of the AUCP with a conversion factor:
Effort = AUCP ∗ conversionfactor. According to [Nag01], the conversion factor represents the test
effort required for a language/technology combination, such as planning, writing and executing tests for a
single UCP using Enterprise JavaBeans.
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(a) UCP Actor Weights (AW) (b) UCP Use Case Weights (UCW)

(c) UCP Technical Complexity Rat-
ings

Figure 9: UCP Factors (reproduced from [Nag01])

3 Conclusion

This paper focused on the evident problems of estimating the (test) effort needed for software engineering
projects. Due to the increasing number of fixed price projects, accurate requirement specifications are
becoming even more important, in order to ensure a project’s economic survival. By using the V-XT model
as an example, it has been made clear why requirement specifications that have been developed at very
early stages in the project’s life cycle, will always contain a certain amount of uncertainty, that gradually
decreases as the project progresses, resulting in a “cone of uncertainty”.

Furthermore, this paper also discussed a selection of test effort estimation methods commonly used in
practice. Hereby, a special focus was put on function point analysis, test point analysis and finally use case
points. Although these methods may use different approaches, in order to determine the effort estimations,
they all share one common prerequisite: a certain level of information accuracy, onto which the effort
calculation will be based. Thus, they all will produce more or less inaccurate results, independent of their
complexity, once the requirement specifications are incomplete.
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