
1

Scheduling and Motion Planning of iRobot Roomba

Jade Cheng

yucheng@hawaii.edu

Abstract

This paper is concerned with the developing of the

next model of Roomba. This paper presents a new

feature that allows the robot to resume its work after

intervals of charging. This paper also models the robot’s

working behaviors under different battery storage

conditions. We simplify and approximate ancillary

parameters while focusing on features associated with

the self-navigation system. The key components are

expressed as a state machine. We present the entry

actions, exit actions, transition actions, and the

operation solutions for each state. We also provide

possible solutions and algorithms for each state. We do

not, however, provide an implementation of the state

machine, or test plan with the model.

1. Introduction

This paper is concerned with the developing of

new features for the next model of Roomba. This is

the investigation of the R&D project for the iRobot.

The specific novel feature that we will present in this

paper targets the resuming of tasks after battery

recharging.

How to teach the robot to resume its work from

its last run is a feature that interests customers. As

posted on the iRobot forums, customers have asked

for related features with comments such as “It would

be nice if Roomba remembers that it only cleaned

the first several rooms but not all of them in the

current cleaning cycle. The next time it runs, it

knows that the first several rooms were already

cleaned and immediately flag itself internally that

the room it was currently in was done and it would

start turning on and seeking the Lighthouse tractor

beam to traverse to the next room.” [1] If we design

a new generation of the iRobot that is able to solve

this problem, it would greatly benefit the company

and the customers.

Hereon we present a description using the con-

cept of a state machine to analyze the challenge

presented above as a problem formulation. We

make the assumption that a Decision Researcher

with a strong mathematical background is the target

reader.

This paper will not, however, provide an imple-

mentation along with the model and problem

formulation. This paper will not provide a test

framework, which would be necessary to ensure the

model is accurate in more than just theory. Instead,

this paper will provide simplified examples, figures,

and straightforward state machine expressions that

appeal to one’s common sense and intuition.

1.1. iRobot Functionality

1.1.1 Sensor system

According to iRobot, the robotic brain of the

Roomba can adapt to new input up to 67 times per

second. The first thing Roomba does when users

press “Clean” is calculate the room size. The iRobot

sends out an infrared signal and checks how long it

takes to bounce back to the infrared receiver located

on its bumper. Once it establishes the size of the

room, it knows how long it should spend cleaning.

While Roomba is cleaning, it avoids steps or any

other kind of drop-off using four infrared sensors on

the front underside of the unit. These cliff sensors

constantly send out infrared signals, and Roomba

expects them to immediately bounce back. If it

approaches a cliff, the signals are suddenly lost, and

this is how Roomba knows to reverse its direction.

When Roomba knocks into something, its bumper

retracts, activating mechanical object sensors that

tell Roomba it has encountered an obstacle. It then

performs and repeats the sequential actions of

backing up, rotating and moving forward until it

finds a clear path.

Another infrared sensor, which we call the wall

sensor, is located on the right side of the bumper

2

and lets Roomba follow very closely along walls and

around objects, like furniture, without touching

them. This means it can clean in close proximity to

these obstacles without bumping into them.

The robot determines its own cleaning path using

what iRobot calls a pre-set algorithm that achieves

complete floor coverage. The Roomba starts

cleaning in an outward-moving spiral and then

heads for the perimeter of the room. Once it hits an

obstacle, it believes it has reached the perimeter of

the room. It then cleans along the “perimeter” until

it hits another obstacle, at which point it cleans

around it, finds a clear path, and proceeds to

traverse the room between objects like walls and

furniture until the allotted cleaning time is up. The

idea is that if it cleans for a certain amount of time,

it should cover the entire floor. But whether it

actually achieves complete floor coverage is extreme-

ly hit-or-miss [2].

1.1.2. Lighthouse Navigation

The Roomba’s lighthouse accessories are especial-

ly useful, and they are considered in this paper as an

essential tool to conduct the new feature. The

lighthouse can act as virtual walls to confine the

Roomba to a particular room, or they can serve as

guideposts to allow the robot to clean one room,

travel into the next room to continue cleaning, and

then navigate back to the docking station for

recharging. There are, therefore, three different

services that the navigation system provides [2].

While the lighthouse is actively providing one of

these three services, we say it is operating in one of

three mutually exclusive modes.

1.1.2.1. Virtual Wall Mode.

In virtual wall mode, the lighthouse turns on

automatically, and the robot will never cross its

fence beam, which acts like an invisible barrier [2].

Figure 1. Virtual wall mode

1.1.2.2. Lighthouse Traversing Mode.

In lighthouse traversing mode, the lighthouse

acts like a virtual door, which opens when the robot

asks it to. Most of the time, the lighthouse has its

fence beam turned on, which prevents the robot

from going past the lighthouse. Once the robot has

finished cleaning the current room, it “asks the

lighthouse to open the door,” and the robot tra-

verses the lighthouse. Traversing is demonstrated

in the following figure [2].

Figure 2. Traversing mode

1.1.2.3. Docking Navigation Mode

When lighthouses are in use, the robot will ignore

signals from any and all home bases—the docking

station unless the robot thinks that it is in the same

room where the dock is located. The robot decides

what room it is in based on how many lighthouses it

has traversed [2].

Figure 3. Docking navigation mode

1.1.3. Self-charging

Self-charging is a built-in feature for the relatively

newly generations of the iRobot. The machine

comes with a docking station that plugs in an AC

outlet. The docking station sends out signals that

the robot receives and uses to determine the

position of the docking station. The communication

between the robot and the docking station turns on

only when they are in the same room. If there is any

other light house between them, the other ligh-

thouse would be turned on before the docking

station.

For the moment, we will assume that the robot is

able to see the docking beams of the home base, but

there is a virtual wall or other impassible obstacle

between the robot and the home base. If the robot

attempts to follow the docking beams, it will follow

3

them until it reaches the impassible object and then

abort its approach and try again. Thinking it has

found the home base, the robot could end up getting

stuck or at least significantly delayed by trying over

and over to follow those docking beams, only to get

part-way there and encounter the impassible object.

On the other hand, if the robot ignores signals from

the home base until it knows that it is in a room

where the home base has been previously, success-

fully acquired, then the robot knows that it can

follow the docking beams to a successful docking

event.

As claimed, Roomba can clean for about two

hours on a single charge. Roomba returns and

connects to the charger by itself when the battery

power is low. It accomplishes this using the infrared

receiver on its front bumper. When the battery

power gets low, the vacuum starts looking for the

infrared signal emitted by the charger. Once it finds

the charger, the Roomba follows the signal and

docks itself to the charger.

1.2. AI Real-time Path Planning Algorithm

This paper is mostly concerned with the robot’s

navigation mechanism. Path planning is a major

topic in the field of mobile robot navigation.

Autonomous mobile robots are used in various

applications such as in automatic freeway driving,

cleaning of hallways, exploration of dangerous

regions, etc. These applications demand robust and

adaptable methods for path planning.

Path planning can be divided into two categories,

one is global path planning, where there exists a

priori knowledge of the complete working area; and

the other is local path planning, where the working

area is uncertain. Global path planning includes

configuration space method, potential field method

and generalized Voronoi diagram. The planning is

done off-line, and the robot has complete knowledge

of its working area and its path when it starts. Local

path planning methods use ultrasonic sensors, laser

range finders, and on-board vision system to

“perceive” the environment; planning is done on-

line [3].

Roomba conducts the local path planning algo-

rithms in most cases as it explores unexplored areas.

As we will discuss below, the robot computes a set of

heuristic values for the possible steps and choose the

best way to go. The calculations are somewhat

subjective. The robot would work its way through

and figure out the map step after step, and this

procedure is complete when the whole area is

cleaned. After the local map is built, the robot can

conduct the global path planning algorithm to travel

on the area that has been explored.

1.3. Finite state machine

This paper will provide a model using the concept

of a finite state machine and provide solutions for

each state. Some of the solutions are built-in

features of the iRobot, and some are new features.

But once we can present the problem as a state

machine, we can analyze each state separately, which

simplifies the analysis as a whole. The states are

independent from each other as we will discuss

below.

A finite state machine (FSM), or finite state au-

tomaton, or simply a state machine, is a model of

behavior composed of a finite number of states,

transitions between those states, and actions. A

finite state machine is an abstract model of a

machine with a primitive internal memory [2].

A current state is determined by past states of the

system. As such, it can be said to record information

about the past, i.e. it reflects the input changes from

the system start to the present moment. A transi-

tion indicates a state change and is described by a

condition that would need to be fulfilled to enable

the transition. An action is a description of an

activity that is to be performed at a given moment.

There are several action types:

Entry action performed when entering the

state.

Exit action performed when exiting the

state.

Input action performed depending on

present state and input condi-

tions.

Transition action performed when performing a

certain transition.

2. Preliminaries

We assume the robot for this research has the

advanced navigation features as the company claims.

We also simply the model by considering only

parameters that are related to the self-navigation

system of the robot.

4

2.1 Assumptions of Built-in Features

2.1.1 Lighthouse Sensor System

We assume the robot has a fully developed sensor

and lighthouse system as the company claims for its

higher-end robots. We also assume the user has

enough lighthouses according to the dwelling unit

floor plan. Normally, we need the same number of

the lighthouses as the room numbers, but whenever

there is a mostly closed corner shape, we assume the

user has placed a lighthouse for the robot to enter

that corner. In other worlds, we assume the robot

has full access of the house. Our new feature would

not introduce in any new mechanism to get around

things and reach the spots that were formerly

unreachable.

2.1.2. Self-Navigation Algorithm

We assume the robot has fully-developed self-

navigation algorithms that work with its sensor and

lighthouse system. As we discussed in the introduc-

tion, the Roomba is a well-developed AI product, and

it is already able to conduct the cleaning task

without missing any significant parts of the area.

We assume the robot has its own algorithm to

calculate the next steps it should take at any given

time. For example, the robot would not become

confused if there is more than one possible path in

front of it. We assume the robot is capable of

calculating a set of different heuristic values for a

given condition, and that it can decide on the one

with the greatest heuristic value during its real-time,

local path exploring.

2.2. Approximations and Simplifications

In this paper, we attempt to model a feature that

allows the Roomba to resume a task after intermis-

sions of recharging. Generally speaking, we consider

the features that are associated with the self-

navigation. In other words, we do not consider

some of the other problem that might interest the

Roomba investigators, such as how to enhance the

vacuuming power, how to switch mode by detecting

the surface material, and so on.

In this paper, we will present a shortest path

searching algorithm on a continuous map, which is a

possible solution for one of the states in our state

machine. We simplify the floor plan as a grid map.

This is a command simplification for this kind of

map exploring problem. By doing this, we do not

consider too much into the details of the floor plan.

In other word, once we divide the room into grids,

and a particular grid can be either occupied or not.

There are only two states for the grids. If the

dividing does not provide a reasonable map, we will

have to cut it into more girds. We either sacrifice a

little bit of the algorithm performance, or sacrifice a

little bit of precision.

3. Problem formulation

3.1 Key Concepts

Before we dive into the problem formulation, we

need to clarify two essential concepts for this model.

These two concepts are also the logic and reasoning

that make our new feature possible to implement.

This first one is how does the robot conduct the

battery-reserving-mode cleaning. The second one is

how to achieve traveling from A to B with the

minimal battery consumption.

3.1.1. Cleaning in a Batter-Reserving Mode

3.1.1.1. Battery-Reserving Mode Cleaning.

As the battery goes low, the robot has to decide

when to turn around and go back to the docking

station. Since the traveling itself costs battery life,

the robot does not want to wait long and take the

risk of dying on the way home. Taking a long

backtrack home is not a good idea either because the

traveling is done on areas already cleaned. In some

sense, the battery life used for traveling from place

to place is a waste.

We consider the lighthouse works as physical

separators. After passing each lighthouse, the robot

calculates the time consumption to travel home

from that lighthouse. For each lighthouse it is a new

start, a new calculation of the local distance from the

current lighthouse. Therefore, when the battery

starts to go low, the robot already has data of the

time needed to travel home from the last lighthouse.

The decision to make is how far away it should go in

the current room in order to reserve enough battery

to go home. If that distance covers the whole room,

the robot recursively does the same calculation for

the next room it enters.

3.1.1.2. Simple Example

As we discussed in the preliminary section, the

robot has its method to calculate the next most

5

attractive step. It calculates a series of heuristic

values for the next steps and takes the best one. We

observe this somewhat follows the keep left/right

algorithm. So let us just draw the tracks as shown

below. The path that the robot takes does not

necessarily need to be the same as the figure but we

are sure that it tends to go towards the unexplored

areas if possible.

In this mode, the robot still processes the regular

heuristic value calculation. The difference is it

refuses to take the steps that lead it be too far away

from the last lighthouse it passed. Within the robot

database, the robot knows how long it will take to go

home from the last lighthouse. Then, it can calcu-

late how far it can travel within the current area.

When the battery life passes a certain level, the

robot turns on the last lighthouse to define a region

and sets itself to the battery-reserving mode.

Figure 4. The Original Tour

Figure 5. The Tour in Battery-Reserving Mode

3.1.2. Shortest Paths on Explored Maps

As we will discuss later, there are several cases in

which the robot needs to travel from one place to

another on an explored area of the map, and the

purpose of these movements is simply moving to the

other part of the map. We can define “explored

area” as “already covered area,” “already cleaned

area,” and so on.

This scenario happens in difference cases: when

the robot needs the resume its cleaning after

charging, when the robot needs to go home after

realizing the battery is low, and when the robot

finishes one room and needs to go back to the last

lighthouse it passed. As we can see, in all of these

scenarios the robot travels on a known portion of

the map.

Since the area is already cleaned, we do not want

to spend too much time in traveling in this region

because it would be a waste of battery life. We need

to find the shortest path as the solution of this

problem. A* algorithms serve this purpose.

3.1.2.1. A* Algorithms

In computer science, A* is a best-first, graph

search algorithm that finds the least-cost path from

a given initial node to one goal node. This is a

variant of Dijkstra’s algorithm, which is more

suitable for a continuous grid-based map [4].

����: the actual shortest distance traveled from

initial node to current node

����: the estimated (or "heuristic") distance from

current node to goal

����: the sum of ���� and ����

3.1.2.2. Simple example of A* Algorithms

Let’s put this implementation into a simplified

example. We have the robot sitting at position A,

and the destination is position B. The destination

could be the docking station, or where the robot

stopped its work for the last trip, and it is time to go

back and resume cleaning. We have two obstacles in

between the robot and its desired location. If A and

B are located in two different rooms, we can think of

the obstacles as the walls. If A and B are located in

the same room, we can think about the obstacles as

the furniture.

The grids on this map are already drawn as the

robot visited this area the last cleaning session. As

we discussed in the preliminary, we consider the

robot has a short term memory of the room layout.

This means the robot remembers the visited area

within a day or two. It allows the robot to resume

the cleaning work after intervals of charging. But

after a couple of days, the robot will always regene-

rate this map as it goes through it and cleans the

area.

6

Figure 6. Execution of A* Algorithm

7

In Figure 6, the number on the top-left is the

current ���� for this grid, the number on the

bottom-left is the local ���� for this grid, and the

number on the bottom-right is the estimated

distance from this node to the destination ����. For

this implementation, we used Manhattan’s method,

which finds the shortest path on the grids without

considering the obstacles and without cutting the

blocks diagonally. This is just one way to estimate,

there are other ways to make the guess and adjust

the actual distances as the algorithm executes.

The figures also used shading to represent the

closed set, which includes the nodes that are already

explored. The open set is shown as nodes without

shading. They contain function values and parent

pointers. The nodes in the open set are waiting to

be examined. They are stored in a priority queue

based on their objective function value, ����. They

are polled out one after another and placed into the

closed set. At the same time, we add their directly

connected neighbors that are not in the open set

into the open set, and update their ���� and ����

values. The figures use crosshatch to represent the

final path. Once we reach the destination, we simply

trace back the parent pointer from the destination

node.

3.2. Problem Configuration and Setup

Hereon we formulate our problem as a state

machine that consists of five states. The entry

action, exit action, transition action, and state

performances are described in detail for each of the

states below.

3.2.1. State 1: Charging

Entry action: There are two ways to start this

state. The robot can be manually placed on the

charger. The robot can execute its self-charging

functionality when it comes back to the home base.

1. State starts manually

2. State starts as self-charging

Exit action: There are three possible states after

exiting this state. The robot may start from

beginning a new round of house cleaning. The robot

may resume its cleaning work which has not been

finished at the last mission. The robot may remain

on the charger after terminating the charging

process. The third case would happen if the robot

had finished its cleaning work during the last

mission while it has not received any new job

request. It is also possible that it is not time for

another round of cleaning yet, if the timer system is

used for automatic scheduling.

1. Enter state 2 → cleans in the regular

mode

2. Enter state 4 → travels from A to B

3. Enter state 6 → terminates state ma-

chine

Input action: The task for this state is clear—

charging. There are two operations involved in

order to properly perform this task. If the battery is

not fully charged, start charging. If the battery is

fully charged, the charging process automatically

shuts down.

Generally speaking, there is only one condition

that determines the performance of this state:

whether or not the robot is fully charged.

1. Condition check: battery is low

→ Performance 1: start charging

2. Condition check: battery is full

→ Performance 2: terminate charging

Transition action: There are two entry actions

and three exit actions. There are five transition

actions associated with these performances. For

entry action 1, it occurs with human interference

and it is a possible way to start this state. For entry

action 2, it occurs when the robot comes back to its

home base and starts its self-charging. For exit

action 1, it occurs when the robot starts a new round

of house cleaning. It starts from the first room

where the docking station is. For exit action 2, it

occurs when the robot needs to go back to where it

was the last time cleaning, and starts from that

point on to clean the rest of the house. For exit

action 3, it occurs when the house is completely

cleaned after the last trip. The state machine is done

execution for this round.

1. Entry action 1 → human interference

2. Entry action 2 → robot comes back

3. Exit action 1 → robot starts new task

4. Exit action 2 → robot resumes last task

5. Exit action 3 → robot stands by

8

3.2.2. State 2: Cleaning in Regular Mode

Entry action: There are three ways to start this

state. The robot starts a new round of cleaning work

from the first room after charging. The robot

resumes its cleaning work from the last trip after

charging. The robot enters a new room and contin-

ues its cleaning work.

1. States starts after charging

2. State starts after finding the right position

3. State starts when entering a new room

Exit action: There are three possible states after

exiting this state. The robot may be finishing up

with one room and sends out a request for the next

closest lighthouse signal, therefore entering state 5.

This may be the last room to clean. The robot may

get ready to head back to its home base—the

charging station, therefore entering state 4. During

the cleaning within this room, the robot may realize

that its battery is running low. It may set itself to a

battery-reserving-cleaning mode, which is state 3.

1. Enter state 5 → requests for lighthouse

signal

2. Enter state 4 → travels from A to B

3. Enter state 3 → cleans in the battery-

reserving mode

Input action: The task for this state is clear—

cleaning in a room. There are several operations

involved in this state in order to properly perform

the task.

Perform the regular cleaning. According to our

preliminaries and the iRobot built-in feature, the

robot has its corresponding algorithm designed to

perform this task. It should always take the next

most reasonable step to explore this unexplored area

with a certain number of floor coverage.

Determine if it is the finishing point of the room.

According to our preliminaries and the iRobot has

its hardware and software working together to

detect the stopping point of the certain room. The

sensor system keeps telling the robot its current

position in the room. The software constantly

computes the overall coverage of this area and tells

the robot if it is time to stop.

Detect the battery storage in real-time. This is a

routine operation for a variety of electronics. We

assume the procedure of measuring the current

battery storage takes almost no time, and the robot

would constantly repeat this operation to keep alert

if the battery is going low.

Determine if this is the end of this round of

house cleaning. According to our preliminaries and

the iRobot built-in feature, it determines the

coverage of rooms in the house by keep tracking how

many lighthouses it has passed. If there is no more

lighthouse to pass and the current room in finished,

the robot knows that it hit the end point of this

round of cleaning. Therefore, it turns around and is

ready to go home.

Therefore, generally speaking, there are three

conditions that the robot is constantly checking:

what is the next most attractive step to take for the

cleaning/exploring purpose; is it the finishing point

of this room; what is the current battery condition.

There is one condition that the robot needs to check

at the end of the state: is this the last room to clean.

1. Constantly

→ Performance 1: computing the next most

attractive step

2. Constantly

→ Performance 2: computing the current

coverage status

3. Constantly

→ Performance 3: detecting the current

battery condition

4. Condition check: this room is finished

→ Performance 4: determine if the whole

house is finished

Transition action: There are three entry actions

and three exit actions. There are six transition

actions associated with these performances. For

entry action 1, it occurs after the charging termi-

nates. For entry action 2, it occurs when the robot

enters a new room that is unexplored. For entry

action 3, it occurs when the robot decides this is

where it left in the last trip and the cleaning work is

not finished yet. For exit action 1, it occurs when

the robot finishes one room and ready to explore

more unexplored area and continue this round of

cleaning work. It, therefore, sends out the request

for entering another room. For exit action 2, it

occurs when the robot finishes one room and

detected that this is the last room to clean. For exit

9

action 3, it occurs when the robot decide the battery

is getting low and ready to reset itself into a battery-

conserving-cleaning mode.

1. Entry action 1 → robot charging termi-

nates

2. Entry action 2 → robots enters a new

room

3. Entry action 3 → robot finds where to

resume cleaning

4. Exit action 1 → robot finishes the room

5. Exit action 2 → robot finishes task

6. Exit action 3 → robot detects low battery

3.2.3. State 3: Cleaning in Battery-Reserving

Mode

Entry action: There is only one way to start this

state. That is from state 2. The robot detects the

battery storage constantly during the regular

cleaning. When it detects that the battery is getting

low, it is possible to perform a little bit more

cleaning work but cannot afford going any further

from its docking station.

State starts after cleaning with regular mode

Exit action: There are two possible states after

exiting this state. Robot needs to go back to the

home base—the charging station, therefore entering

state 4. Although there is only one following state in

this case, there are two different cases when the

robot leave this state and enter state 4. We will

discuss them in the transition action section. The

robot may finish the assigned area before the

battery becomes critically low. Then, it may also

request for the next lighthouse signal to lead it into

a new area.

1. Enter state 4 → travels from A to B

2. Enter state 5 → requests the lighthouse

signal

Input action: The task for this state is to clean

the room in a battery-reserving-cleaning mode.

There are several operations involved in this state in

order to properly perform the task.

Perform the battery-reserving-mode cleaning.

According to our preliminaries and the iRobot built-

in feature, the robot has its corresponding algorithm

designed to calculate the next most attractive step.

It should always provide a series of heuristic values

for the following possible steps. In this mode, the

robot refuses to take the steps that lead it farther

than a certain distance away from the last ligh-

thouse.

Determine if it is the finishing point of the room.

The robot is still doing this calculation in this mode

of cleaning. According to our preliminaries and the

iRobot has its hardware and software working

together to detect the stopping point of the certain

room. The sensor system keeps telling the robot its

current position in the room. The software con-

stantly computes the overall coverage of this area

and tells the robot if it is time to stop.

Detect the battery storage in real-time. As part of

the routine, the battery life detection is still execut-

ing in this mode. The difference here is battery

condition may switch from low to critically low

during the state.

Determine if this is the end of this round of

house cleaning. If the robot hit the finish point of

current room while it has not turned switch to state

4, the robot still does this calculation in this mode of

cleaning. According to our preliminaries and the

iRobot built-in feature, it determines the coverage of

rooms in the house by keep tracking how many

lighthouses it has passed. If there is no more

lighthouse to pass and the current room in finished,

the robot knows that it hit the end point of this

round of cleaning. It, therefore, turns around and

ready to go home.

Therefore generally speaking, there are three

conditions that the robot is constantly checking:

what is the next most attractive step to take for the

cleaning/exploring purpose; is it the finishing point

of this room; what is the current battery condition.

There is one condition that the robot needs to check

at the end of the state: is this the last room to clean.

1. Constantly

→ Performance 1: computing the next most

attractive step within a certain distance

2. Constantly

→ Performance 2: computing the current

coverage status

3. Constantly

→ Performance 3: detecting the current

battery condition

10

4. Condition check: this room is finished

→ Performance 4: determine if the whole

house is finished

Transition action: There are one entry actions

and two exit actions. But there are four transition

actions associated with these performances. For

entry action 1, it occurs when the robot realizes that

the battery is low and it is time to switch to the

battery-cleaning mode. For exit action 1, it occurs in

two scenarios, when the robot finishes the rest of

the house within this state and it turns back goes

home; when the robot detects that the battery is

into a critically low level and it is time go home with

no delay. For entry action 2, it occurs when the

robot finishes this room within this mode and

request for the next lighthouse signal.

1. Entry action 1 → robot detects low battery

2. Exit action 1 → robot finishes the task

3. Exit action 1 → robot detects the battery

is critically low

4. Exit action 2 → robot finishes the room

3.2.4. State 4: Traveling from A to B

Entry action: There are four ways to start this

state. The robot needs to resume its cleaning work

from the last trip after charging. The robot receives

the lighthouse signal and ready to leave the current

room and enter a new room. The robot finishes a

round of house cleaning work and ready to go back

to the charging station. In this last case, it may be

during the regular cleaning or within the battery-

reserving-mode.

1. States starts after charging

2. State starts after receiving the signal

3. State starts after finishing the task within

the regular mode

4. State starts after finishing the task within

the battery-reserving mode

Exit action: There are three possible states after

exiting this state. The robot may start cleaning,

dock, or start charging. The first case contains the

following states. It may resume cleaning with full

battery power in the regular mode, state 2. It may

enter a new room and resume the cleaning in the

regular mode, state 2. It may enter a new room and

resume cleaning in its battery-reserving mode state

3. The second case contains one following state,

state 1—charging state.

1. Enter state 2 → cleaning in the regular

mode

2. Enter state 3 → cleans in the battery-

reserving mode

3. Enter state 1 → charging

Input action: The task for this state is traveling

with the shortest path. We discussed the algorithm

for this path planning in the previous section. There

are two operations involved in order to properly

perfume this task. The task is straightforward—

traveling. The first operation is calculating the

shortest path from A to B using A* algorithm. The

second operation is requesting lighthouse navigation

constantly.

Perform the calculation and determine the short-

est path from A to B. As we discussed this can be

done using A* algorithm, which compute within a

grid-based continuous map.

Request the lighthouse navigation. The robot

keeps a list of the lighthouses it passed and request

the navigation from them one after the other. The

lighthouse set the next destination as the robot

travels.

Therefore generally speaking, there are three

conditions that the robot is constantly checking:

where it is on the map and how far it is from the

active lighthouse. There is one calculation that the

robot needs to compute: based on the stored map,

what is the shortest path to the active lighthouse.

1. Constantly

→ Performance 1: where it is on the map

2. Constantly

→ Performance 2: how far it is from the ac-

tive lighthouse

3. Condition check: reaches the lighthouse

→ Performance 3: request for the next ligh-

thouse.

4. Condition check: receives the next signal

→ Performance 4: calculate the shortest

path from current position to that ligh-

thouse.

11

Transition action: There are four entry actions

and three exit actions. There are seven transition

actions associated with these performances. For

entry action 1, it occurs after the charging termi-

nates. For entry action 2, it occurs when the robot

finishes the current room and ready to enter a new

room that is unexplored. For entry action 3 and 4, it

occurs when the robot finishes this round of house

cleaning, and ready to go back to the charging

station and charge itself. For exit action 1 and 2, it

occurs when the robot reaches a certain place where

it needs to resume the cleaning work. For exit

action 3, it occurs when the robot goes back to the

charging station and ready to perform self-charging.

1. Entry action 1

→ robot charging terminates

2. Entry action 2

→ robots finishes the current room

3. Entry action 3, 4

→ robot finished the whole house

4. Exit action 1, 2

→ robot finds the place to resume cleaning

work

5. Exit action 3

→ robot reaches the charging station

3.2.5. State 5: Requesting the Lighthouse Signal

Entry action: There are only two ways to start

this state. That is from state 2 and state 3. The

robot detects that it reaches the finish point of a

current room. It sends out request to go to the next

room if there is any. It may happen during the

regular cleaning or during the battery-reserving

mode.

1. States starts after finishing cleaning a room

with sufficient battery

2. States starts after finishing cleaning a room

within the battery-reserving mode

Exit action: There is only one possible state after

exiting this state. Robot needs to leave the current

room, which is finished. To perform this task, the

robot enters state 4. It takes the shortest path from

its current position to the active lighthouse, which

will lead it to the next unexplored area.

Enter state 4, travels from A to B

Input action: The task for this state is simple—

sending out request to the next lighthouse. As the

users’ observance, the robot freezes itself for a

second when it reaches the finishing point of a

certain area and ready to clean a new room. The

task of this state is performed during that time

interval. The robot communicates with the ligh-

thouse. After it receives the navigation signal, the

task of this state is finished. The robot enters state

4, when it takes the shortest path to move to the

active lighthouse.

Perform the communication with the lighthouse.

According to our preliminaries and the iRobot built-

in feature, the robot has its corresponding algorithm

to decide what the next lighthouse is to turn on. It

communicates with only that one lighthouse.

1. Constantly

→ Performance 1: is this the finishing point

of the current room

2. Condition check: this room is finished

→ Performance 2: request to turn on the

next lighthouse

Transition action: There are two entry actions

and one exit actions. But there are only two

transition actions associated with these perfor-

mances. For entry action 1 and 2, it occurs when the

robot realizes that this is the end of the current

room. For exit action 1, it occurs when the robot

receives the navigation signal as the response of its

request.

1. Entry action 1, 2

→ Robot finishes cleaning the current room

2. Exit action 1

→ Robot receives the lighthouse signal

12

3.3. State machine

Figure 7. Model—The State Machine

So far, we categorized all the performances into

different states. Each state has its entry state/states

and exit state/states. We also established the state

performances with their exiting conditions, which

tell us when to leave this current state and which

next state to enter.

Based on the definition of the state machine, we

know we can conquer the problem as a whole by

seeking solutions for each of the state. The state

performances should be independent from other

states. Let’s look into the solutions for our five

states.

3.3.1. Solution for State 1—Charging

Apparently, it is safe to assume the robot has a

solution for this state because it is part of the nature

of all most all electronics.

3.3.2. Solution for State 2—Cleaning in the

Regular Mode

As we discussed in the introduction section and

the preliminary section, we assume the robot has

fully developed self navigation algorithms that work

with its sensor and lighthouse system. The robot is

able to conduct the cleaning task without signifi-

cantly missing any parts of the area. The robot

calculates and constantly provides a set of heuristic

values for the next possible steps. It compares and

takes the most attractive step as it explores the area.

The robot calculates:

����	
��, ����	
�, ����	
��, … , ����	
��

Heuristic value set:

��, �, ��, … , �� where ����	
�� � ��

Suppose we have:

�� � � � �� � � � ��

We learn that ����	
�� provides the largest heu-

ristic value, and ��	
� is, therefore, the best guess

according to the robot.

3.3.3. Solution for State 3—Cleaning in the

Battery-Reserving Mode

As we discussed in the key concepts section of the

problem formulation, this is solved by refusing the

steps that lead the robot farther than a certain

distance from the last lighthouse. In this mode, the

robot still tries to explore the scheduled area

according its navigation algorithms. However, once

the robot realizes that the battery is low to a certain

level, it requests the last lighthouse to set a distance

limitation and refuse to take the steps take the robot

outside of this area.

The robot calculates:

����	
��, ����	
�, ����	
��, … , ����	
��

Heuristic value set:

��, �, ��, … , �� where ����	
�� � ��

Suppose we have:

�� � � � �� � � � ��

Suppose we also have �, ��, ��� �� 42 ,vv that

takes the robot out of the restricted range. In this

mode, the robot would therefore pick ��	
��� as the

next most attractive step. Although based on its

original navigation algorithms ��	
� has a even

higher heuristic value, the robot refuses to take it

once it is in this battery-reserving mode

13

3.3.4. Solution for State 4—Travel from A to B

As we discussed in the key concepts section of the

problem formulation, this is solved by implementing

A* algorithm. In this mode, the robot is either going

home from the end point of its current work, or

resuming the last round of cleaning. In either case,

the robot needs to travel from A to B directly

without any delay. Also, since the area that the

robot travels on is already explored. The robot has

built a temporary map for it. We can apply A*

algorithm to compute the shortest path to get from

A to B.

3.3.5. Solution for State 5—Request for Ligh-

thouse Navigation

Apparently, it is safe to assume the robot has a

solution for this state because it is one of the most

important features that Roomba has. This is also

the fundamental feature that the robot conducts the

self navigation to cover the whole house without

human interference.

4. Conclusion and Remarks

In this paper, we modeled a new feature for

Roomba—the iRobot. It provides a possibility for

the robot to resume its work after intervals of

charging. This paper also modeled the robot’s

working behaviors under different battery storage

conditions.

The model was constructed under a series of

assumptions and simplifications. We assumed the

robot in this research has a full self-navigation and

sensor system as the company claimed. We consi-

dered most of the possible factors associated with

the navigation mechanism while we did not consider

other factors that might also interest customers and

investigators.

The problem was formulated as a finite state

machine. We presented the entry actions, exit

actions, performances, and transition actions for

each state. We further analyzed the solutions for

each state’s performances. The operations for each

state could be achieved either by the robot’s built-in

functionality or the novel features that we pre-

sented.

The definition of the state machine was provided,

but the model was not meant to be used directly.

Instead it is meant to serve as a modeling reference

for future generations of Roomba development.

5. References

[1] http://home.howstuffworks.com

[2] http://forums.irobot.com/irobothome/board

[3] I.J. Nagrath, Laxmidhar Behera, K. Madhava Krishna,

and K. Deepak Rajasekar, Real-time navigation of a

mobile robot using kohonen’s topology conserving neural

network

[4] http://en.wikipedia.org/wiki/A*_search_algorithm

