
Nr.6

An Introduction to

Distributed
Database Systems

by

Moira Norrie

Redaktor: Benkt Wangler
SISU - Svenska Institutet for Systemutveckling

Box 1250, 163 13 SpANGA, 08 - 750 7500, Kistagangen 26, KISTA

InnehAlisforteckning

Forord.. ii

An Introduction to Distributed Database Systems................................ 1
O. Introduction 1
1. Terminology .. 1
2. Categories of Distributed Systems 4
3. Data Distribution 9
4. Query Processing 14
5. Transaction Management 20
6. Global Data Model and Query Language 25
7. Schema Integ ration 25
8. Concluding Remarks 29
9. References 30

Forord

Detta nummer av SISU Analys redogor for forskningsomr~det distribuerade
databassystem. Eftersom omr~det ar nytt och sv~rt, finns annu s~ lange endast
prototypsystem i forskningsmiljo realiserade. Det ar darfor i forsta hand allmanna
problemstallningar och teorier som presenteras. N~gra viktiga forskningssystem
namns dock kort.

Ett distribuerat databassystem ar ett system som medger enhetlig tiIIg~ng till data
som hanteras av ett antal olika databashanteringssystem. Dessa tankes normalt vara
fordelade over flera datorsystem, sammankopplade i ett natverk, darav
benamningen distribuerad. Om de olika databashanteringssystemen tillampar
samma typ av datamodell, t.ex. relationsmodellen, sages systemet vara homogent, i
annat fall heterogent.

I fortsattningen kallas de olika datorsystemen i natverket for noder. Dessa kan t.ex.
vara lokaliserade till olika delar av ett foretag. Det praktiska och sakerhetsmassiga
vardet av att p~ detta satt sprida data och inflytande over dessa till de platser dar det
hor hemma, ar uppenbart.

Inledningsvis redogors for begrepp och terminologi inom omrMet, Iiksom for olika
kategorier av distribuerade databassystem. Darefter foljer en genomg~ng av vart
och ett av problemomr~dena

• datadistribution
• bearbetning av utsokningskrav
• transaktionshantering
• globala datamodeller och spr~k
• schemaintegration.

Datadistribution har att gora med hur data fordelas over de olika nodema i
natverket. Har finns vasentligen tv~ vagar att g~. Den ena innebar att man har
samma typer av uppgifter p~ varje nod, men p~ var och en enbart den del av den
totala mangden data som ror den noden. Den andra och mer komplicerade metoden
innebar, n~got forenklat, att man har olika slag av information (olika
projektioner), men avseende samma objekt i verksamheten, p~ de olika nodema.
Upprepning av information p~ flera noder kan av effektivitetsskal ibland vara
motiverad.

En viktigt problem vad galler bearbetning av utsokningskrav ar hur svar p~
fr~gor som kraver sammanstallning av data fr~n flera noder skall produceras s~
effektivt som mojligt. Losningen p~ detta problem ar att, utan att aventyra
slutresultatet, andra den ordning i vilken de olika operationer som ing~r i
utsokningen utfores, s~ att den totalt overforda datamangden minimeras.

Eftersom en transaktion kan initieras vid vilken nod som heist och berora flera
andra noder, ar sekvenserings-, 'deadlock' - och 'recovery' -problematik ett
angelaget forskningsomr~de. p~ grund av forekomsten av distribuerade
transaktioner kommer har traditionella strategier delvis till korta och dessa
behover dartor vidareutvecklas och forbattras.

II

Aven for ett heterogent system ar det lampligt att, for kommunikation mellan
noder, ha en gemensam global datamodell med tillhorande frAgesprAk.
Relationsmodellen ar har, pA grund av sin flexibilitet, ett naturligt val.

Om man viii skapa en distribuerad databas utifrAn ett antal existerande databaser,
stalls man infor problemet att integrera dessas lokala schemata. Huvudproblemet
ar i detta fall att identifiera begrepp som ar semantiskt ekvivalenta och att avgora
p~ vilket satt de ar detta. Exempelvis kan tv~ databaser innehAlla information om
samma objekt i verksamheten, men p~ olika detaljeringsniv~ eller med olika
strukturell representation.

Det mesta av den forskning som hittills bedrivits har gallt homogena system,
eftersom man dar slipper problemen med att transformera mellan olika
datamodeller och fr~gespr~k. p~ senare tid har dock intresset for heterogena system
okat, eftersom det potentiella anvandningsomr~det for s~dana ar storre.

Benkt Wangler

iii

An Introduction to Distributed Database Systems

Moira Norrie

September, 1987.

O. Introduction

The recent advances in computer networking in terms of both the technology and the
standardization of protocols, has resulted in an increased interest in distributed
database systems. Although still at the research stage, it is envisaged that such
systems will be both feasible and cost-effective in the near future.

Here, we discuss the general requirements of distributed database systems and
provide an overview of the techniques used to satisfy these requirements. We wish
to emphasize that the term distributed database system is a general term that can be
applied to many different kinds of systems, and that the requirements of anyone
system will depend on the intended use and environmelt of that system. Hence, any
two such systems will share some, but not necessarily all, of the requirements
discussed in this paper.

In section 2, we shall examine some of the categori3s of distributed database systems
and consider their requirements. The later sections,will then introduce techniques
to meet these requirements. Here, it is possible o11y to provide an overview of these
techniques. For a detailed discussion of distributed database systems, one should
turn to the text by Ceri and F'elagatti [3] - both for their detailed descriptions of
the techniques and for its valuable bibliographic information.

First, we have a section on terminology to introduce terms and notation that will be
used in our discussion, and, hopefully, provide sufficient background knowledge for
those readers with little experience of database concepts.

1. Terminology

A database is a collection of data which is shared by a number of applications. Access
to the database is controlled by a software system known as a database management
system (DBMS).

Associated with a database will be a database schema which is a general decsription
of the information represented in the database. The DBMS will utilise the schema in
performing operations on the database.

1

Operations on the database are specified by means of a database language. In some
systems, there are two kinds of database language - one for specifying the schema
(Data Definition Language) and one for specifying operations on the database (Data
Manipulation Language). Other systems treat data and metadata (the schema)
uniformly and operate on both by means of a single database language.

The database language either may be embedded in a host programming language, or
be used as a direct interactive language, in which case it is usually termed a query
language. Ideally, a query language should allow the user to interact directly with
the DBMS and query both the database and the schema. Some query languages only
support retrieval operations while others support both update and retrieval
operations.

The term database system will be used to refer to an entire application system Le. a
DBMS with a particular database schema, associated database and user queries!
application programs as illustrated in figure 1. A logical unit of work in a database
system, whether a user query or part of an application program, is termed a
transaction.

DBMS

I schema I

I~I
queries

database system

Figure 1. An Application System

Each DBMS is based on some data model. A data model may be thought of as a
framework for the construction of schemata and associated databases in that it
specifies a set of available structures and operations.

Many data models have been proposed, but the only one which will be mentioned in
any detail in this paper is the relational data model. We shall therefore present a
very simple overview of this data model which should provide sufficient
information for the remainder of this paper. For further details of both the
relational model and other data models, a general database text such as that by
Ullman [7] is recommended.

A relation may be viewed as a table. Each row is referred to as a tuple. Each column
contains values associated with some attribute. The number of columns defines the
degree of a relation, and the number of rows its cardinality.

2

A relation is described by means of a relation scheme which gives the name of the
relation and a list of its attributes. For example, a relation containing information
on persons could have the following relation scheme:

PERSON(NAME,ADDRESS),

and a relation on this relation scheme could be:

PERSON NAME ADDRESS

Jones F 4 High St, Chester
Martin M 33 Main St, Falkirk
Smith W 76 Wood Lane, London
Thomas M 1 Mill Rd, Newtown
Watson J 15 North St, Glasgow

A relational database would consist of a number of relations and the schema for the
database would include the set of corresponding relation schemes.

If an attribute is specified as a key for a relation, then the value of that attribute
will uniquely specify a tuple of the relation. Thus, if NAME is a key attribute for
PERSON, then only one tuple in the relation can have a particular name value.

There are many relational operators, but here we shall only consider those of
projection, selection, union and join which will be denoted as follows:

(J (R)
f

RUS
RHS

project tuples of R to attribute A

select those tuples of R that satisfy
condition f

form the union of Rand S

perform the join of Rand S

Effectively, the selection operation selects a subset of the rows of a relation, while
the project operation selects a subset of the columns and removes any duplicate
rows that appear in the reduced relation.

If two relations, Rand S, have the same scheme, then the union of these two
relations would be a relation formed by taking the rows of R together with the rows
of S - again removing any duplicates.

If two relations have a common attribute, then these two relations may be joined
with respect to that attribute by forming a new relation which links together rows
which have matching values for the common attribute. Thus, a join operation is a
way of combining information held in two relations.

There are many different forms of join operation; however, our references to join

3

operations would apply to all forms of joins and we will therefore leave unspecified
the "join condition" of the operations.

2. Categories of Distributed Database Systems

A survey of the literature on distributed database systems would reveal that while
there is general agreement that certain kinds of system should be classified as
distributed database systems, it is not very clear where the boundaries of this
classification lie. So first we shall discuss some categories of system that might be
classified as distributed database systems, and, further, consider the
characteristics and requirements of such systems.

Our definition of a distributed database system is:

A distributed database system is a system which supports uniform
access to data controlled by a number of database management
systems.

This definition is deliberately a very general one and, as we shall see, covers a wide
range of systems: however, all of these systems could be considered as a restriction
of a very general and flexible view of a distributed database system.

We shall discuss three general categories of systems covered by such a general
definition and show that each category of system has its own intended uses,
characteristics and hence requirements.

Let us begin by considering a system which provides

uniform access to a collection of different database systems.

We may assume that the information contents of the databases are unrelated and that
there is no attempt to integrate the databases. Thus, the user is aware of the
existence of a number of separate databases and the distributed database system
would offer the user a selection of schemata - one for each database. Queries would
not be distributed, but rather would be directed to the relevant database system as
illustrated in figure 2.

-----}
Figure 2. Uniform Access to a Collection of Database Systems

4

It might be the case that the database systems reside at different nodes of a network
of computer systems and, therefore, are physically distributed; or, it might be that
the different database sys'{ems reside on a single computer system and, therefore,
that the distribution is logical. This latter situation is often termed a
multi-database system.

We regard a multi-database system simply as a special case of a distributed database
system in which nodes are logical rather than physical entities, and where message
passing is internal and the associated communication costs minimal.

Hence, we shall assume that each database management system resides at a separate
node, and that there is a reliable communications network capable of transmitting
messages between nodes.

Such a system could be regarded as an information seNer in that its purpose is to
provide a user with facilities to retrieve information held in a variety of database
systems without the need to learn how to use each individual database management
system.

By uniform access, we mean that the user should be able to view all schemata in
terms of the same data model and access all of the databases using the same query
language. If all of the database systems are based on the same database management
system, then the distributed database system will be homogeneous and the user
query language for all users will simply be that of the database management system
used.

If the database systems are based on different database management systems, then
the distributed database system will be heterogeneous. The degree of heterogeneity
may vary in that it may be that the database management systems are different
implementations of the same data model, or, it may be that they are based on
different data models. In the rest of this paper, we shall assume the latter.

In a heterogeneous system, one must consider whether the user data model and query
language should be the same for all users of the distributed database system, or,
whether a user may use the data model and query language of their local database
management system with which they are likely to be familiar. Some proposed
systems provide full flexibility by supporting both of these: thus, they provide a
global data model and query lanaguage which any user may employ, and they support
access via a user's local data model and query language.

Thus, the primary requirement of a heterogeneous system would be the provision of
some global query language and data model, and support for the relevant mappings
between the global query language and data model and the local query languages and
data models. In the case where users employ their local query language and data
model, then this global query language and data model may be regarded as internal to
the distributed database system: the query language translation in such a system is
illustrated in figure 3. The adoption of an internal query language and data model
avoids the necessity of providing mappings between all possible pairs of query
languages and data models that exist in the system.

5

user
query language

query language of
selected database syste

Figure 3. Query Language Translation in A Heterogeneous System

Note that there would also have to be some translation of the format of results so
that a result produced by the selected database system could be presented to the user
in a form in accordance with their model.

If such a system is to act as an information server, then it is essential that it not
only provides support for users to retrieve data from the individual databases, but
also that it provides the user with information as to the databases available. It would
therefore be desirable to have facilities to allow users to browse both the schemata
and the databases.

Since the emphasis in this system is that of permitting users easy access to a
selection of databases for the retrieval of information, it is likely that these users
would have only read access to data and that all updates would be performed under
the direct control of the local database management system.

The second category of system we shall consider is one which provides

access to a single database which is distributed over several nodes.

Thus, we have a single, integrated distributed database. The user is presented with a
single global schema and queries are directed at the distributed database as indicated
in figure 4. The distributed database management system must decompose these
queries into a number of subqueries. It then directs these subqueries to the relevant
nodes and, on receiving the responses to these subqueries, will compose a response
to the initial query. The system supports full location transparency in that a user is
unaware of the distribution of data.

6

Figure 4. Access to a Distributed Database

The single schema presented to the user is a global view of the distributed database
and each node will have a local schema which describes that part of the distributed
database held at that node.

Such a system may be developed through the integration of existing database systems
which hold semantically related information. The integration may be prompted by
the existence of application';; w:lich re-'lIre access to data objects in a number of
these databases. It mav we!1 be t'1E G(,,:' Tt tile existing database systems are based
on different catabase manager; ,9· l _., .: then the distributed database system will
be heteroge,i''' .J'. :') he :atsr C3::f'. l .z::(schemata must be mapped into a global
data mod€l r:eg~aVor..

On the other hand, it is possible that the u:stributed database has been designed as
such from scratch. For example, :t COmDa~\!may wish to have a database system and,
for reasons of geographical organ;sUion. performance etc., have decided that the
database should be distributed. In thIs ~qse, it is likely that the system will be
homogeneous in that the database management systems at each node will be the same.
The design cf the distributed database wi;; ,;tart with a global schema and then decide
on data distribution.

For reasons of performance and avcd:c.Jility of data in the event of node or
communication failure, a copy of a data ot-pct may be held at more than one node of
the distributed database. This causes prot'ems in ensuring consistency among the
copies of a data object in the event of updales to the distributed database. In addition,
the processing of queries will involve selecting which copies of data objects should
be accessed to optimize performance.

Hence, the issues of data distribution, query processing and the general management
of transactions are much more complicated in the case of a distributed database.

Our third category of distributed database system is in fact a generalization of the
first two, and may be described as a system which provides

uniform access to a collection of distributed databases.

By restricting our collection to one, then we simply have the case of a single
distributed database as in our second category. If we regard a non-distributed
database as a restriction of a distributed database, then our first category would also
be a restriction of this category.

7

}

Figure 5. Access to a Collection of Distributed Databases.

If we consider extending the notion of an information server, then one could envisage
a system which would provide an environment to support access to a variety of
databases available on a computer network. Some of these databases would contain
semantically related information and there would be some form of loose integration
which would allow users to retrieve information across databases. The integration
would be loose in that each node would still retain full control over their database.
Thus, one could have a fairly flexible system to which new users and new databases
could be added at any time.

Having considered some of the forms of system that might be classified as
distributed database systems, one can see that the requirements are dependent on the
intended use of the system and its method of development.

The following topics can be identified as important to distributed database systems,
although the importance of anyone topic to anyone system will depend on the
characteristics of that particular system:

o data distribution
o query processing
o transaction management
o global data models and laguages
o schema integration.

In the following sections, each of these topics will be discussed in turn.

Whatever the requirements of anyone particular distributed database system, there
are some general comments that can be made on the architecture of a distributed
database system.

A distributed database management system (DDBMS) is the software level "on top
of" the DBMSs that supports the functions of the distributed database system.

Control of the distributed database system may be centralized, in which case, all
nodes communicate via a designated control node. Ultimately, this control node will
be responsible for transaction management.

8

Alternatively, control may be decentralized, in which case, each node has a copy of
the DDBMS as illustrated in figure 6. It may be that each node has a transaction
manager responsible for transactions initiated at that node, and a data manager
responsible for access to the local database.

DDBMS

Icatalogue I
DBMS

I schema I

r~~1
DDBMS

Icatalogue I
DBMS

I schema I

I~~I ocal query

distributed database system

Figure 6. General Architecture of A Distributed Database System

A DDBMS requires information on the local database systems and the distribution of
data and this is held in a catalogue.

A distributed databae system may be such that it supports both local and global
processing as indicated in figure 6. Thus, there may be local applications which
access the local database system directly, and are "unaware" of the existence of a
distributed database system.

3. Data Distribution

In a distributed database, the data corresponding to a single global schema will be
distributed across a number of different database management systems. In this
section, we shall discuss the forms that this distribution of data may take, and the
criteria used in the design of a distributed database to decide on the distribution of
data.

Note that in the case of a distributed database which is the result of the integration
of existing databases, one may regard the distribution of data as predetermined.
However, it still may be desirable, either during or after integration, to alter the
distribution of data for reasons of performance.

9

Consider a database as a collection of data objects, and that each data object is
associated with a type. For example, given a relational database system with a
relation scheme

PERSON (NAME, SALARY, POST)

then we could consider that each tuple of a relation of this scheme is a data object of
type PERSON. Then data distribution is concerned with how the data objects are
distributed; in other words, which data objects are held at each node.

One of the main objectives in deciding on the distribution of data is that of
maximizing processing locality. By this we mean that, since the communication
overheads of access to a data object at a remote node are high, the number of such
remote accesses should be minimized and the number of local accesses maximized.
Other factors that may be taken into account are those of availability of data objects
in the event of node and communication network failures, workload distribution and
the storage facilities at each node.

To determine the optimal data distribution, the characteristics of applications must
be analysed. For each application, one must estimate the frequency of activation of
that application at each node, and the number, type and statistical distribution of
accesses to data objects. If a large number of the expected applications will be ad hoc
interactive user queries, then, clearly, it may be more difficult to predict the
application characteristics.

The distribution of data may involve replication, partitioning and fragmentation as
discussed below.

With replication, copies of the same data object may be located at more than one
node. This may be done for reasons of performance in that it can be used to increase
the number of cases in which an application has a local copy of a required data
object, and also for reasons of availability in that it can ensure that a copy of a data
object is accessible even in the event of a node failure.

Partitioning involves the partitioning of the global schema into a number of local
schemata - one for each node. It corresponds to selecting which types of data objects
will be held at each node. Thus, we might decide that all data objects of type PERSON
should be held at one node while all data objects of type DEPARTMENT would be held at
another node.

Fragmentation is similar to partitioning in that it is a matter of deciding which data
objects should be stored at which nodes. However, it differs in that one is forming
fragments of one particular type of data object and allocating fragments to nodes. The
formation of fragments is based on a logical grouping of data objects within a
particular type. Thus, we might decide to form two fragments of PERSON objects -
one comprising all PERSON objects for persons in administrative posts and one for
all persons in research posts.

10

The process of fragmentation may be split into two stages: the first is the formation
of fragments and the second that of the allocation of fragments to nodes - and this
allocation may involve the replication of fragme, while the second is concerned with
the physical placement of data.

Most of the work on data distribution has been concerned with the fragmentation
(and replication) of relations. In part, this is due to the general popularity of the
relational model, but it is also due to the fact that relations are more amenable to
fragmentation techniques, than, say is a network structure. A relational database is
already "partitioned" into discrete structures - namely, individual relations - and
there is only one kind of structure to "fragment". Therefore, our discussion of
fragmentation will continue in the context of a relational system.

PERSON NAME SALARY POST

Jones F 50000 administrator
Martin M 12000 researcher
Smith W 20000 administrator
Thomas M 18000 researcher
Watson J 25000 administrator

Horizontal fragments of a relation are formed by taking subsets of the tuples based
on some selection conditions. These fragments should be complete in that every tuple
should belong to some fragment, and be disjoint in that no tuple should belong to
more than one fragment. So in our example, we could form two horizontal
fragments, P1 and P2, based on the selection conditions

POST = "researcher"
and

POST = "administrator"

giving the fragments:

Fragment P1

Fragment P2

NAME SALARY POST

Martin M 12000 researcher
ThomasM 18000 researcher

NAME SALARY POST

Jones F 50000 administrator
Smith W 20000 administrator
Watson J 25000 administrator

One must be able to reconstruct the global relation PERSON from the fragments: in
the case of horizontal fragments, this is done by taking the union of all the fragment
relations.

1 1

Horizontal fragmentation is based on a set of selection predicates. These predicates
are determined by examining each application in turn, and, introducing new
predicates that will be significant to that application. For example, the formation of
fragment P1 based on the predicate POST ="researcher", should indicate that there is
some application which will access only those tuples associated with researchers.

Having formed the fragments of a global relation, one then considers allocation of
fragments to nodes. In the case of non-replication, a fragment would be located at the
node with the maximum number of expected references to that fragment. Holding
copies of a fragment at additonal nodes will reduce the cost of retrieval accesses;
however, since an update must be performed on all copies of a fragment, it will
increase the cost of update accesses. Hence, with replication, a fragment should be
located at nodes such that the estimated benefit in terms of read accesses outweighs
the estimated increase in the cost of update accesses.

global relation

fragment 1

fragment 2

fragment 3

node 1

node 2

node 3

Figure 7. Horizontal Fragmentation and Allocation of a Global Relation

Figure 7 shows a global relation which is split into three horizontal fragments:
these fragments are allocated to the three nodes with replication. The fragments of a
global relation located at a particular node are said to form the physical image of the
global relation at that node. For example, in figure 7, the physical image of the
global relation at node 1 is the union of fragments 1 and 2.

One can also form vertical fragments of a relation by taking subsets of the relation
attributes. The join operation can be used to reconstruct the global relation from the
vertical fragments; however, to facilitate this, it is necessary that either the

12

relation key is included in each fragment, or, that a special tuple identifier
attribute is appended to each tuple. For example, in our PERSON relation we could
form the two vertical fragments:

NAME SALARY

Jones F 50000
Martin M 12000
Smith W 20000
Thomas M 18000
Watson J 25000

NAME POST

Jones F administrator
Martin M researcher
Smith W administrator
Thomas M researcher
Watson J administrator

assuming that NAME is a key attribute. Alternatively, if the system used tuple
identifiers, then we could have two vertical fragments as follows:

TUPLE-ID NAME SAlARY

1 Jones F 50000
2 Martin M 12000
3 Smith W 20000
4 Thomas M 18000
5 Watson J 25000

TUPLE-ID POST

1 administrator
2 researcher
3 administrator
4 researcher
5 administrator

In both these cases, there is no loss of information in forming the fragments, and the
global relation can be formed from the natural join of the two fragments. Hence,
vertical fragmentation must be complete in that each attribute must be in some
fragment, but they need not be disjoint in that the key attribute might appear in all
fragments.

Some systems allow overlapping of attributes in vertical fragments other than
specifically key attributes. In our example, it would seem that even if NAME were
not a key attribute, that it would be desirable to have it appear in both vertical
fragments since it seems likely that most applications would require access to the
NAME attribute along with the other information held in the fragment. Allowing this
replication of data within fragments, creates problems of ensuring consistency in
the event of updates, and, for this reason, it is advisable that it only occurs with
attributes for which updates are rare.

It is possible to combine horizontal and vertical fragmentation. Usually, systems
which do support this, only do so in a limited form by, for example, restricting the
fragmentation process to vertical fragmentation followed by horizontal
fragmentation - rather than allowing any combination to any level.

It is rare for a distributed database management system to support the full range of
distribution options that have been described. Some support fragmentation but not
replication. Fragmentation may be limited to either horizontal or vertical - but not
both.

13

As we shall see in the next section, designing a good scheme for data distribution
based on predicted application characteristics can be of great benefit in facilitating
reductions in the costs of query evaluation.

4. Query Processing

There are two main stages involved in processing a query on a distributed database:
the first stage is concerned with the production of a query expression in terms of
local database schemata and the second stage is concerned with the selection of
evaluation strategies for that expression. Thus, if the query expression established
in the first stage, specified a join between two relations R1 and R2, where R1 and R2
are situated at different nodes, then, in the second stage of processing, a strategy for
evaluating that join will be selected. For example, it would be possible to move
relation R1 to the node of R2 and perform the join there, or vice versa, or, as we
shall discuss later, select some other strategy.

In both stages, techniques may be used to optimize performance based on knowledge
of data distribution, and, estimated procesing and communication costs. However, it
should be remembered that complex optimization techniques are themselves
time-consuming. Therefore, in the case of queries that will be submitted many
times, it may be worth employing sophisticated query compilation techniques; but
with a one-off interactive query, then the query may be evaluated employing only
relatively simple and fast optimization procedures.

It is also worth noting what is used as a measure of performance in query
optimization. If the nodes of the system are connected by a wide-area network, then
the times for message transmission between nodes will be considerable and
therefore the communication costs will be the dominant consideration in query
optimization. In fact, in such cases, the local processing times are often ignored. In
the case of a local area network, where the times for message transmission are far
less, then the local processing times are much more significant and should be taken
into account. Also, one should consider whether the performance measure should be
the estimated total cost of all communication, or, the estimated elapsed time between
query initiation and response arrival.

Again, most of the work on query optimization techniques applies to relational
systems. To describe the stages of query processing and present an introduction to
optimization techniques, we shall use a simple example of a relational system with
the two relation schemes:

PERSON(NAME,SALARY,POST)
ALLOCATION(NAME,DEPARTMENT).

Assume two horizontal fragments of PERSON, and three horizontal fragments of
ALLOCATION. Now, suppose further that we have a query to list the names of
departments containing a person whose salary is greater than 20000. We shall
express this in relational algebra as follows:

14

1tDEPARTMENT (crSALARY>20000 (PERSON~ALLOCATION)).

This expression can be represented by the following query evaluation tree:

It DEPARTMENT

I
cr

SALARY>20000

I
A

PERsa-J ALLOCATION

With all relational algebra expressions, whether for distributed or non-distributed
databases, a general rule is to reduce the operand relations as much as possible
before performing a join operation. In simple terms, this is achieved by moving
projections and selections towards the leaves of the query tree, and introducing
additional projections, whenever possible, to remove attributes no longer required
in the query execution. In this way, our query tree would become:

It DEPARTMENT

~

A
ALLOCATION

cr
SALARY>20000

I
PERSON

Now, as it stands, our query is expressed in terms of the global relations PERSON and
ALLOCATION and we must transform it to an expression in terms of the relation
fragments Le. for global relations which are horizontally fragmented, we replace a
reference to the relation by an expression of the union of the fragments. Our query
tree would then become:

15

1t DEPARTMENT

I
1><3

~
1tNAME U

I A1~A3

crSALARY>20000

I
u

~
P1 P2

We now have a query expression that could be evaluated by fetching all the
fragments, constructing the global relation and evaluating the query. However, this
would be considered the worst case in terms of performance because of the large
associated communication costs. So we look for further equivalence transformations
which would improve performance by reducing the communication costs.

Unary operations, such as project and select, can be processed locally Le. at the node
of the operand relation. However, operations, such as join and union, which involve
more than one operand relation, will require tuples to be transmitted between nodes
when the participating relations are at different nodes. To minimize the quantity of
data to be transmitted, it is best to distribute as much processing as possible to be
performed locally. Moving selections and projections "below" unions and joins in
the query tree is therefore advantageous. For example, if we consider the processing
performed on the fragments of PERSON, the projection and selection may be
distributed over the union of P1 and P2 as follows:

u

/~
1tNAME 1tNAME

I I
crSALARY>20000

P1

crSALARY>20000

P2

and is beneficial by reducing the size of the operand relations.

The next stage in the query optimization process is to determine whether any of the
branches of the query tree can be removed Le. whether any of the processing can be

16

eliminated. Such subtree removal may take place if we can determine that the
relation at the root of the subtree would always be empty.

This can be done by associating a qualification with each relation : this qualification
is a condition that will be satisfied by all tuples of that relation. By starting from
the leaves of the query tree and working towards the root, the algebra of
qualifications can be applied for each operation and thus we can determine the
qualification associated with each node relation in the tree. In the case where a
qualification condition is contradictory, then the corresponding relation is
intrinsically empty, and the subtree with that relation as root can be removed since
it will not contribute to the final result.

In our example, we could express the qualification for the leaf P1 as

[P1 : POST= "researcher"]

then applying the selection

<JSALARY>20000

we can refine the qualification as

[<J SALARY>20000(P1): POST="researcher" & SALARY>20000].

If we continued evaluating the qualifications for our example, it would not lead to
any pruning of the query tree. However, if, for example, relation PERSON had been
fragmented, not only on the value of the POST attribute, but also, on the value of the
SALARY attribute, then we might have had a fragment P1' with qualification

[P1' : POST="researcher" & SALARY<15000].

Then, by applying the selection, the qualification would become

[<J SALARY>20000(P1'): POST="researcher" & SALARY<15000 & SALARY>20000].

We would have a contradictory qualification and the relation at the root of the
subtree intrinsically would be empty and we could prune the query tree accordingly.

Note that since horizontal fragmentation is based on the analysis of applications,
then, in practice, such simplifications should occur frequently. In other words,
many applications would require access toonly a limited number of fragments.

Just as projections and selections can be moved to nodes by moving them "below"
union operations in the query tree, it is possible to distribute join operations in the
same way.

(A1 uA2)~ (81 u 82) = (A1D<l81) u (A1~ 82) u (A2I><J81) u (A2N82)

At first glance, this may not appear to be of much benefit - but again we would hope
that some of the results of these "sub-joins" would be empiy intrinsically and
therefore could be eliminated. Again, such decisions can be based on the use of

17

relations with qualification. If both PERSON and ALLOCATION were fragmented
horizontally on the basis of names, then, clearly ,the join of a PERSON fragment with
names in the range "A" to "H", and an ALLOCATION fragment with names in the
range"N" to "S", will always yield the empty relation.

This elimination of sub-joins is aided by the use of derived horizontal fragmentation
where a relation is horizontally fragmented based on the fragmentation of another
relation. For example, if our applications were such that access to relation
ALLOCATION is usually in conjunction with access to relation PERSON, then we could
have a horizontal fragmentation of ALLOCATION which corresponded to the
fragmentation of PERSON rather than one which came solely from a selection
condition on the values of attributes of ALLOCATION, as follows:

P1

P2

NAME SALARY POST

Martin M 12000 researcher
Thomas M 18000 researcher

NAME SALARY POST

Jones F 50000 administrator
Smith W 20000 administrator
Watson J 25000 administrator

A1

A2

NAME DEPARTMENT

Martin M computing
Thomas M economics

NAME DEPARTMENT

Jones F computing
Smith W personnel
Watson J economics

Having examined the techniques for the transformation of query expressions, we
now assume that we have a query tree which is ready for evaluation. The problem is
one of selecting a strategy for the evaluation that will minimize the communication
costs.

Consider a join operation between PERSON and ALLOCATION where the two relations
reside at different nodes as illustrated in figure 8:

node 1

ALLOCATlo-J

node 2

Figure 8. Placement of Relations to be Joined

One strategy would be that of moving relation ALLOCATION to node 1 and then
performing the join at node 1; while another strategy would be to move relation
PERSON to node 2 and then perform the join at node 2. The choice between these two
strategies could be made by considering the size of the relations and also the
required destination of the result. However, it still may be the case that all tuples of

18

a relation are transmitted to the other node and many of them will not participate in
the join i.e. there are no tuples in the other relation with matching values for the
join attributes. A technique that would select only those tuples that would actually
participate in the join is required.

Consider our example of performing a natural join of PERSON and ALLOCATION and
assume that the join will be performed at node 2. Then those tuples of PERSON that
will participate in the join are those with a value of attribute NAME that appears in
some tuple of the ALLOCATION relation. By projecting ALLOCATION to NAME, we would
obtain a relation that contained all the NAME values that occurred in relation
ALLOCATION. This projected relation could then be transferred to node 1, and by
joining it with relation PERSON, we effectively would select out those tuples of
PERSON which have NAME values that appear in ALLOCATION. Now we need transfer
only those selected tuples to node 2 and perform the join with ALLOCATION.

The set of selected tuples of PERSON that would participate in the join with
ALLOCATION is known as the semi-join of PERSON and ALLOCATION and is denoted

PERSON I>< ALLOCATION

It may appear that we have gained nothing and in fact may have increased evaluation
costs by introducing additional operations. However, in the case where relations are
large, both in terms of number of attributes and number of tuples, then great
savings can be made in the quantity of data transmitted in forming the join. Having
stated that, further consideration of the above example would indicate that there are
cases where savings are unlikely to be great (if anything) because the nature of the
relations involved are such that most of the tuples will participate in the join. An
additional constraint that every person must be allocated to at least one department
would mean that all tuples of PERSON and ALLOCATION would participate in a join of
the two relations. Such information is useful in determining whether the
construction of a semi-join would be beneficial in reducing communication costs.

The effective use of optimization techniques in both the transformation of query
expressions, and in the selection of evaluation strategies is dependent on the
availability of knowledge about the properties of relations. The more detailed the
knowledge that is available, the better the estimates of communication and
processing costs will be, and hence there wll be an improved basis for selection.

We have already discussed the idea of associating qualifications with relations in
query transformation. Another general technique is that of storing a profile of each
relation. Basically, these profiles describe the size of the relation in terms of the
number of tuples, the number of attributes and the sizes of the attribute values, and
information on the number of different values of an attribute that appear in the
relation. This information can then be used to estimate the size of relations to be
evaluated and this can then be used to estimate the costs of transferring a relation
between nodes.

Our discussion of query evaluation has assumed that each node is capable of
receiving a relation and performing the specified operations. A problem that may
arise in heterogeneous systems is that of different nodes having different
processing capabilities. For example, a particular relational database management

19

system may not be capable of accepting input relations for processing, or, it may
not be capable of performing all the required operations. Hence, in deciding upon a
strategy for evaluation, the processing capability of each node should be taken into
account.

5. Transaction Management

One of the fundamental roles of any database management system is that of ensuring
that different applications can access the same database without interference from
each other. If an error condition occurs during the processing of an application, then
the effects of that error should not be propagated to other applications being
processed at the same or a later time. To this end. the system has atomic units of
processing which are termed transactions.

A transaction must either complete successfully and have its effects permanently
recorded in the database by means of a commit operation, or, if it cannot complete
successfully due to an error or system failure, then its effects must be completely
removed by means of an abort operation. To be able to do this, the effects of a
transaction should be visible to other transactions only after that transaction has
committed. In effect. this means that transactions run in isclation.

Once a transaction has committed, then the system must ensure that the effects will
not be lost in the event of a system fai~ure or disc CldSI1, it therefore requires
mechanisms to recover the datatase to a current and consistent state in the event of
such failures. The system may maintain some form of log record of transactions and
this can be used to ensure that the effects of any transactions Hlat have committed
are redone and the effects of any transactions that had 'lot committed at the time of
failure are undone

If transactions are to execute in Isolation. then the outcome of executing a set of
transactions concurrently should be the same as if those transactions had been
executed in some senal order. Thus, two concurrent transactions, which access
some common data objects, must somehow synchronize their activities Le. there
must be some form of concurrency control.

Basically, a concurrency control mechanism is a method of ordering transactions
and ensuring that the effect of the transactions is the same as if those transactions
had executed serially in this order. The ordering could be based on one of the
following: the order of intitiation of transactions, the order in which transactions
access data objects, or, the order of completion of transactions.

To provide a serialization ordering based on order of initiation, transactions are
allocated a unique sequence number called a timestamp at intiation. If two
transactions have timestamps T1 and T2 such that T 1<T2' then the transaction with
timestamp T2 will be referred to as the "younger" transaction in that it occurs after

the transaction with timestamp T1 in the ordering.

When a transaction requests access to a data object, the system checks whether this
access would violate the ordering scheme. In the case of a requested read access, the

20

system must check that no "younger" transaction has already written to that data
object, while with a requested write access, a check must be made that no "younger"
transaction has already written or read that data object. If a check fails, then the
requesting transaction must abort and restart. In fact, in the case of a transaction
requesting a write access to a data object which has already been written to by a
"younger" transaction, and the data object has not been read by any "younger"
transactions, one may regard this as a transaction trying to place obsolete
information in the database and, instead of aborting the transaction, simply ignore
the request.

So, for each data object, the system must record the timestamps of the last
transactions to have read and written that data object.

In a distributed database system, transactions may be initiated at different nodes.
We will assume that each node has an associated transaction manager which will
maintain its own transaction sequence number counter. To ensure that the
transaction timestamps are unique throughout the system, the transaction
timestamps will be generated from the node sequence number and the node identifier
as illustrated in figure 9.

timestamp

node sequence
number

node
identifier

Figure 9. Timestamp Generation in A Distributed Database System

To maintain a certain degree of "fairness" among transactions from different nodes,
it is desirable to try and keep the sequence number counters for the nodes loosely
synchronized: otherwise, a node which generated lots of transactions would have a
high sequence number count and its transactions would be at an advantage over
transactions from a node with a low sequence number count. A simple remedy is to
have nodes update their sequence number counts on receipt of a timestamped
message from a node with a higher sequence number count.

The severity of aborting and restarting transactions in such a timestamping scheme
has led to the proposal of a scheme which instead of checking whether accesses will
violate the serialization order, actually enforces this order by deferring access to
Objects until it is known that all accesses from "older" transactions have been dealt
with: this adaptation is known as conservative timestamping. The problem is now
one of knowing that there will be no future requests from "older" transactions-
and ensuring that transactions are not made to wait forever.

Assume that each transaction manager sends access requests for its transactions in
timestamp order, and that the communications network delivers messages in the
same order in which they are sent. Then if a transaction manager has received from
each node an access request with a timestamp greater than T, then the transaction
manager knows that there can be no future request with timestamp <T and,
therefore, that it can grant access to a transaction with timestamp T. A transaction

21

manager with no recent access requests to a particular node may send a timestamped
null request message indicating the timestamp of its last access request: this
ensures that no transaction should wait unnecessarily. To some extent, this method
shifts most of the problem to the transaction managers in that they must have some
way of guaranteeing to send access requests in timestamp order.

Another method of ordering transactions is that of using the order in which they
access data objecrs t; determine the serialization ordering. If fwo transactions
access the same data object X, then whichever transaction accesses X first will
precede the other transaction in the ordering scheme. Thus, the second transaction
must be prevented from accessing that object until after the first transaction has
completed. Access to data objects would be controlled by some form of locking
mechanism. The first transaction will hold a lock on X until it commits.

This ordering of transactions is partial rather than total in that two transactions
which access no common data objects will not necessarily be ordered with respect to
each other.

A problem that may arise with this dynamic form of ordering is that of deadlock:
this corresponds to a situation in which two conflicting orderings have been
determined. Consider two transactions T1 and T2 which both access data objects X

and Y. It is possible that the concurrent execution of these two transactions could
lead to the situation, illustrated in figure 10, in which both transactions would wait
forever.

transaction T transaction T21

access X
access Y

request X
•

request Y •• •• •
• wait • wait• •• •

Figure 10. Transaction Deadlock

The problem is that T1 accesses X before T2 and that implies an ordering T1<T2;

however, T2 accesses Y before T1 and that implies an ordering T2<Tl' Clearly, these

two orderings conflict and the result is a deadlock situation.

Deadlock can be detected by maintaining a waits-for graph which represents
transactions' locks on data objects and requests for data objects. Figure 11 shows
the waits-for graph for our transactions T1 and T2 in their deadlock situation.

22

Figure 11. A Waits-For Deadlock Detection Graph

A cycle in a waits-for graph indicates that the set of transactions involved in the
cycle are "waiting on each other" and none can proceed. If deadlock is detected, then
one or more of the transactions must be aborted and this will free some of the locks
on data objects.

Deadlock in a distributed system may involve more than one node and it is therefore
necessary that transaction managers exchange information on their local waits-for
graphs. One possibility would be to have centralized deadlock detection, in which one
node was responsible for maintaining a global waits-for graph and detecting and
recovering from any global deadlock situations. Each transaction manager would
send that part of its waits-for graph relevant to global deadlock to the node
responsible for global deadlock detection. The part of a local waits-for graph
relevant to global deadlock is that involving potential cycles with transactions
waiting for external data objects, or external requests for data obejcts at that node.
For example, the local waits-for graph in figure 12 could form part of a global
deadlock situation and would therefore be sent to the node responsible for global
deadlock detection. All such local waits-for graphs received by that node would be
combined to form the global waits-for graph .

•.•.•.•.•.....................•.•.•.•.•.•.•.•.•.•.•.•.•.•.....•.............•...•.•...•.•.•.•.•.•.•.•............... --.;
,,,,
, I external I

Figure 12. Part of a Local Waits-For Graph Indicating Possible Global Deadlock

Other methods for global deadlock detection have been proposed that will avoid
centralization. It may be that any transaction manager can detect global deadlock
through a continual exchange of relevant information among the nodes: a form of
distributed deadlock detection rather than centralized daedlock detection results.

In a system which supports replication of data objects, the basic locking scheme for
concurrency control will have to be adapted to ensure that there is consistency
among all copies of a data object. A simple scheme would be to require a transaction
to hold locks on all copies of a data object for a write access and to hold a lock on a

23

single copy for a read access. This would prevent one transaction writing to a data
object while another transaction was reading another copy of the same data object.
One variation is that of majority locking in which, for any access, a transaction
must obtain a lock on a majority of the copies of the data object. Another method is
that of designating a primary copy for each data object and before accessing a copy of
that data object, a lock must be obtained on the primary copy.

Ordering transactions according to their order of completion may at first seem
strange. The idea is that all transaction processing is performed on local copies of
data objects and that the effects of a transaction are recorded in the database only
during the commit operation. Therefore, before performing the commit operation,
the system checks to see whether the transaction is in conflict with any transactions
that have already committed. For each transaction, the system maintains a record of
all objects read and written by that transaction. At the end of transaction
processing, the read and write sets of the transaction are compared with those of
transactions that have committed while this transaction was executing. If there is a
non-empty intersection of, say, the read set of this transaction and the write set of a
committed transaction, then a conflict exists and this transaction must be aborted
and restarted. If there is no conflict detected during this validation procedure, the
transaction is allowed to commit and its effects are recorded in the database by
performing the appropriate write operations.

In some distributed database systems, the transaction manager for a transaction may
invoke sub-transactions which will execute at other nodes. Then the transaction
manager must ensure that either all of the sub-transactions commit during the
commit phase, or, that none of them commit. This is achieved by some form of
two-phase commit protocol. During the first phase, the transaction manager
establishes whether or not each subtransaction is ready to commit. If all
subtransactions are ready to commit, then the transaction manager will issue a
commit command to all subtransactions. However, if anyone of the subtransactions
fails to indicate that it is ready to commit, the transaction manager will issue an
abort command to all subtransactions.

The selection of concurrency control and recovery mechanisms for a particular
distributed database management system depends on both the general requirements
of the system and its intended applications. In general, concurrency control
mechanisms based on locking are appropriate in systems where the probability of
conflict between transactions is high: this is mainly due to the high overheads
associated with transaction aborts and restarts that exist with other mechanisms.
However, it must be remembered that there may be high overheads associated with
lock maintenance and that locking may be very restrictive.

Any mechanism that has some degree of centralized control would be considered
undesirable in a system where local autonomy is of great importance, and it also has
disadvantages in terms of possible communication bottlenecks and vulnerability to
node failure. However, in a star-structured system in which all communication is
via a central node, then such mechanisms may be a natural choice.

Many techniques for concurrency control and recovery have been proposed and it is
certainly one of the most active areas in database research. Here, we have been able
to give only a very brief overview of some of the approaches. For details of

24

concurrency control and recovery in both distributed and non-distributed database
systems see [2].

6. Global Data Model a~,d Query Language

In a heterogeneous distributed database system, the choice of a global data model and
query language is one .of the major design issues. As stated previously, the
suitability of any particular model and language will depend on whether they are
intended purely as internal to the system or as a user model and language. In the
latter case, clearly the model and language must be user-oriented, while, in the
former case, the emphasis would be on issues such as ease of representation and
mappings, and query processing capabilities.

In any case, the model and language must be capable of representing a wide range of
data models and languages covering both record and object oriented data models. The
global model must be able to capture both the structure and semantics of the
different schemata, and the global language must be able to represent the operations
of the various query languages. It should be accepted that there may be parts of a
query which cannot be translated - and that these will be treated as exceptions.

Some form of extended relational model seems to be a popular choice - although it
should be stressed that this is an area of research which is still at a fairly early
stage due to the fact that there has been less research effort placed on heterogeneous
distributed database systems in the past. An extended relational model is one in
which relations are used to represent both data and metadata Le. relations are used
to represent both the schema and the data. Thus, special metadata relations are used
to describe entity types, relationships, constraints etc.

The popularity of an extended relational model stems from various factors. The lack
of structure and inherent constraints makes the model very flexible and suitable for
the representation of other models. As can be seen from the earlier sections on data
distribution and query processing, relational systems are well-suited to these
techniques and most of the work in these areas as been done in the context of a
relational system.

In the Proteus project [1], it was considered important that users should be able to
use their own local query language and, accordingly, an internal global query
language and daat model were used. The internal query language was based on
relational algebra, and schema information was represented by a form of extended
relational model.

In contrast, the MULTIBASE system [4] provides all users with the same query
language and data model, and their choice was based on the functional data model as
proposed by Shipman [6].

7. Schema Integration

To form a distributed database from a set of existing databases, one must integrate

25

the set of local schemata into a single, global schema and produce a set of mappings
from this global schema to the local schemata. This integration of schemata is also
sometimes used in a method of database design where a number of different user
views are combined to form a database schema: in this case, the process is referred
to as view integration.

Schema integration is normally a~;sociated with heterogeneous distributed database
systems - not because of any iltrinsic property, but rather because, as already
discussed, the heterogef !eity often arises out of the integration of existing databases.
In the case of a heterogeneous system, clearly the local schemata must be mapped
into equivalent schematC:lof the chosen global data model before integration can take
place.

The main problem of schema imegration is that of trying to identify semantic
equivalences in the local schemata. In other words, one must try to find overlaps in
the schemata where the same part of reality is being described.

It is very difficult to identify true semantic equivalences without good knowledge of
the application reality. With a tightly-coupled distributed database system with a
single administrative body, then it will be the responsibility of that body to take
decisions on semantic equivalence and to guide the integration process.

In the case of a loosely-coupled system with no single administrative body, it is
much more realistic to accept that there will not be general agreement on a global
schema: instead, each node may decide on its own global view of the distributed
database, ignoring any information that is not of interest to the users at that node.

To demonstrate some of the difficulties in schema integration, we will consider a
very simple example in which we have two local schemata, each with student objects
with a set of attributes, as illustrated in figure13.

NODE 1

NAME GRADE STATUS

NODE 2

NAME ASSESSMENT STATUS

Figure 13. Local Schemata at Nodes 1 and 2

If we accept that student objects are semantically equivalent, then the two local

26

schemata may be merged into a single tree-structured schema with a generalized
object type STUDENT, and the two specialized object types STUDENT-1 and STUDENT-2
corresponding to the two local schemata as given in figure 14.

STUDENT

FEN) NAME GRADE STATUS FtG'O NAME ASSESSMENTSTATUS

Figure 14. Introduction of a Generalized Object Type

Then the next stage is to examine the attributes of STUDENT-1 and STUDENT-2 and
decide which ones are semantically equivalent and can be associated with the
generalized type STUDENT.

The first problem to consider is that of naming. It is possible that two attributes
may be semantically equivalent but have different names e.g. GRADE and
ASSESSMENT. On the other hand, two attributes may have the same name but not be
semantically equivalent: for example, in one case, STATUS might be a string
identifying the marital status and in the other case be a string identifying student
status e.g. postgraduate.

Having decided that two attributes are semantically equivalent, one must consider
whether the scope of the attribute is local to that node or global to the distributed
database. For example, if we decide that GRADE and ASSESSMENT are semantically
equivalent, then consider the interpretation of a value "A" for GRADE at node 1. Does
this value have a global interpretation? Would it have the same meaning as a value
"A" for ASSESSMENT at node 2?

If attributes of STUDENT-1 and STUDENT-2 are semantically euqivalent and have
global scope, then the attributes may be removed from the specialized object types
and replaced by an attribute of the generalized object type. For example, we may
decide to have a NAME attribute for STUDENT to replace those of STUDENT-1 and
STUDENT-2 as given in figure 15.

27

!teN) GRADE STATUS FE.GD ASSESSMENT STATUS

Figure 15. Moving Equivalent Global Attributes to the Generalised Oject Type

If the attributes are semantically equivalent but the scopes are local, then the
actions possible will depend upon whether the intersection of the sets of student
objects of nodes 1 and 2 is non-empty. If the intersection is empty, then the local
attributes may be replaced by a single attribute for STUDENT that refers to the
attribute values of student objects in their local environment.

Thus, if there are no students who appear in both the database at node 1 and the
database at node 2, then the GRADE and ASSESSMENT attributes of STUDENT-1 and
STUDENT-2, respectively, could be replaced by a single GRADE attribute of STUDENT
as represented in figure 16. Then for a particular student, the value of attribute
GRADE would be interpreted according to the relevant node. Thus, if nodes 1 and 2
were associated with different universities, and it were the case that no student
could belong to more than one university, then the value of GRADE would be
interpreted in the context of the appropriate university.

STATUS STATUS

Figure 16. Generalizing Equivalent Local Attributes in Disjoint Databases

However, if it were possible that a studDnt could belong to ')oth universities, then
that student would have an associated value for both GRADE and ASSESSMENT. In this
case, the attributes must remain with the specialized object types and we could, for
example, introduce a new attribute such as AVERAGE-GRADE for the generalized type
provided that this could be given some reasonable interpretation.

If the local schemata have key attributes which are used to uniquely identify
objects, then in the process of schema integration one must decide upon a global key

28

attribute. Assume that REGNO is the key attribute in both schemata. If the REGNO
attributes have global scope, then the value of REGNO will be unique globally and,
therefore, the local attributes REGNO can be replaced by the global attribute REGNO
of student.

However, if the scopes are local, then a new global key will have to be devised. One
way of achieving this would be to augment the values of REGNO by a local identifier
to make them globally unique. In both of these cases, the global schema would be as
given in figure 17.

STATUS STATUS

Figure 17. Making REGNO a Global Key Attribute

Alternatively, one could retain REGNO as an attribute for both STUDENT-1 and
STUDENT-2 and introduce a new attribute to STUDENT which did have the global key
property.

Here, we have illustrated only some of the problems of schema integration. Notice
that in our example, we started from two very similar structures for student object
types. In practice, two databases may both contain information on students - but the
level of detail or structural representation may be very different. In addition,
different representations may be used for similar attribute values: for example,
currency values may be recorded using different units of currency.

8. Concluding Remarks

An overview of the major issues of concern to the designers of distributed database
systems has been presented. We have chosen to discuss general concepts rather than
provide descriptions of particular research systems that have been developed.

Two systems that are particularly worthy of mention because of their significance
in the historical development of distributed database systems are SDD-1 [5] and

*Systems R [8].

SDD-1 was developed by the Computer Corporation of America, and was the first

29

large distributed database project. The most significant contributions of the project
were the techniques developed for concurrency control and query processing.

*System R is a distributed database management system based on IBM's relational
database system, System R. One of the major features of the system was that of
retaining the local autonomy of nodes.

Both of these systems are homogeneous and relational. Nearly all of the early work
on distributed database systems was on homogeneous systems, but recently there has
been a great increase in interest in heterogeneous systems. In part ,this is due to the
fact that heterogeneous systems were seen as "too difficult" and it was better to
concentrate intial research on the simpler homogeneous systems. However, it is also
the case that there is now greater appreciation of the potential uses and flexibility
offered by heterogeneous systems.

9. References

[1] Atkinson M P et ai, The Proteus Distributed Database System, in Proc. of the
Third British National Conference on Databases (BNCOD 3), ed. J Longstaff,
Pub. Cambrdige University Press, 1984.

[2] Bernstein P A, Hadzilacos V and Goodman N, Concurrency Control and Recovery
in Database Systems, pub. Addison-Wesley, 1987.

[3] Ceri Sand Pelagatti G, Distributed Databases: Principles and Systems, pub.
McGraw-Hili, 1984.

[4] Landers T and Rosenberg R L, An Overview of MUL TlBASE, Distributed
Databases, ed. H J Schneider, pub. North-Holland, 1982.

[5] Rothnie J B et ai, Introduction to a System for Distributed Databases (SDD-1),
ACM Transactions on Database Systems, Vol. 5 No.1, 1980.

[6] Shipman D, The Functional Data Model and the Data Language Daplex, ACM
Transactions on Database Systems, Vol. 6 No.1, 1981.

[7] Ullman J D, Principles of Database Systems, 2nd ed., pub. Pitman, 1983.

[8] Williams R et aI, R": An Overview of the Architecture, Proc. of the
International Conference on Database Systems, 1982.

30

	page1
	titles
	Nr.6
	An Introduction to

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7
	image8

	page2
	titles
	InnehAlisforteckning

	page3
	titles
	Forord

	page4
	titles
	iii

	page5
	titles
	An Introduction to Distributed Database Systems

	page6
	titles
	I~I

	images
	image1

	page7
	images
	image1

	tables
	table1

	page8
	titles
	-----}

	images
	image1
	image2
	image3

	page9
	page10
	images
	image1

	page11
	images
	image1
	image2

	page12
	titles
	}

	images
	image1
	image2

	page13
	titles
	r~~1
	I~~I

	images
	image1
	image2

	page14
	page15
	tables
	table1
	table2
	table3

	page16
	images
	image1
	image2
	image3
	image4

	page17
	tables
	table1
	table2
	table3
	table4

	page18
	page19
	titles
	I
	I
	I

	images
	image1

	page20
	titles
	I
	I
	u
	u
	/~
	I I

	page21
	page22
	images
	image1
	image2

	tables
	table1
	table2
	table3
	table4

	page23
	page24
	page25
	page26
	tables
	table1

	page27
	images
	image1
	image2
	image3

	page28
	page29
	page30
	titles
	NODE 1
	NODE 2

	images
	image1
	image2

	page31
	images
	image1
	image2

	page32
	images
	image1
	image2

	page33
	images
	image1

	page34

