
Background:

In probit or logistic regressions, one can not base statistical inferences based on simply looking at the co-efficient and statistical significance of the interaction terms (Ai et al., 2003).

A basic introduction on what is meant by interaction effect is explained in http://glimo.vub.ac.be/downloads/interaction.htm (What is interaction effect?) and in Interaction effects between continuous variables, published in http://www.nd.edu/~rwilliam/stats2/155.pdf, and some detailed introduction on interaction is provided in A Primer on Interaction Effects in http://www.unc.edu/~preacher/interact/interactions.htm); interaction effects in CART type model is given in, Correlation and Interaction Effects with Random Forests (http://www.goldenhelix.com/correlation_interaction.html). For interaction effect in factorial models, see http://www.amazon.com/gp/product/0761912215/102-8548866-0231335?v=glance&n=283155 or Box and Hunter, Design of Experiments.

A nice introduction by Norton and Ai (see references) who did pioneering work on "computational aspects of interaction effects for non-linear models" is http://www.academyhealth.org/2004/ppt/norton2.ppt.

With interaction terms, one has to be very careful when interpreting any of the terms involved in the interaction. This write-up examines the models with interactions and applies Dr. Norton's method to arrive at the size, standard errors and significance of the interaction terms. However, Dr. Norton's program is not able to handle 194,000 observations; it took approximately 11 hours to estimate 75,000 observations for a model with 1 interaction (old_old, endo_vis, old_old*endo_vis) and 1 continuous variable. Therefore, we looked for alternatives using nlcom. This write-up examines comparisons of interest in the presence of interaction terms, using STATA 8.2.

Some tutorials:

The paper is organized as follows:

- a. Difference between probability and odds
- b. *logistic* command in STATA gives odds ratios
- c. *logit* command in STATA gives estimates
- d. difficulties interpreting main effects when the model has interaction terms
- e. use of STATA command to get the odds of the combinations of old_old and endocrinologist visits ([1,1], [1,0], [0,1], [0,0])
- f. use of these cells to get the odds ratio given in the output and not given in the output
- g. use of lincom in STATA to estimate specific cell
- h. use of probabilities to do comparisons
- i. use of nlcom to estimate risk difference
- i. probit regression
- k. Interpretation of probit co-efficients
- 1. Converting probit co-efficients to change in probabilities for easy interpretation

- i. continuous independent variable (use of function *normd*) and for dummy independent variable (use of function **norm**)
- ii. calculate marginal effects hand calculation
- iii. calculate marginal effects use of dprobit
- iv. calculate marginal effects use of mfx command
- v. calculate marginal effects use of nlcom
- m. Probit regression with interaction effects (for 10,000 observations)
 - i. Calculate interaction effect using nlcom
 - ii. Using Dr.Norton's ineff program
- n. Logistic regression
 - i. calculate marginal effects hand calculation
 - ii. calcualte marginal effects use of mfx command
 - iii. calculate effect using nlcom
 - iv. calculate interaction effect using nlcom using Dr. Norton's method

Odds versus probability:

Odds: The ratio of the probability of a patient catching flu to the probability not catching the flu.

For example, if the odds of having allergy this season are 20:1 (read "twenty to one"). The sizes of the numbers on either side of the colon represent the relative chances of not catching flu (on the left) and catching flu (on the right). In other words, what you are told is that the chance of not catching flu is 20 times as great as the chance of having allergy.

Note that odds of 10:1 are not the same as a probability of 1/10.

If an event has a probability of 1/10, then the probability of the event not happening is 9/10. So the chance of the event not happening is nine times as great as the chance of the event happening; the odds are 9:1.

Probability: Probability is the expected number of flu patients divided by the total number of patients.

Relationship:

Odds = probability divided by
$$(1 - probability)$$
. = $\frac{Pr \ obability}{1 - probability}$

Example:

If an event has a probability of 1/10, then the probability of the event not happening is 9/10. So the chance of the event not happening is nine times as great as the chance of the event happening; the odds are 9:1.

Probability = odds divided by
$$(1 + odds) = \frac{odds}{1 + odds}$$

Example:

If the odds are 10:1 then the probability = 1/11

In this case we assume that there are 11 likely outcomes and events not happening is 10 and event happening is 1. So the probability of the even happening = 1 / 11.

Simple Model:

$$\log it(p) = \beta_0 + \beta_1 \text{ old } \text{ old } \text{ or } \ln \left[\frac{\stackrel{\wedge}{p}}{1-p} \right] = \beta_0 + \beta_1 \text{ old } \text{ old }$$

. logistic a1c_test old_old

Logistic regression		Number of obs	=	194772
		LR chi2(1)	=	17.10
		Prob > chi2	=	0.0000
Log likelihood = -117729.9		Pseudo R2	=	0.0001
alc_test Odds Ratio Std. Err.	Z	P> z [95%	Conf.	Interval]

Std. Err for odds ratios is not meaningful.

. logit

Logit estimates					Number LR chi		s = =	
Log likelihood =	-117729.9				Prob > Pseudo	chi2	=	0.0000
alc_test	Coef.	Std.	Err.	z	P> z	 [95% 	Conf.	Interval]

old_old | -.0422966 .0102205 -4.14 0.000 -.0623285 -.0222648 _cons | .8989483 .0063666 141.20 0.000 .88647 .9114266

When old_old = 1, the risk of A1c test is

$$\log it(p_1) = \beta_0 + \beta_1$$

When old_old = 0 the risk of A1c test is

$$\log it(p_0) = \beta_0$$

Take the difference:

$$\log it(p_1) - \log it(p_0) = ([\beta_0 + \beta_1] - \beta_0) = \beta_1$$

Odds ratio:

$$\ln \left[\frac{\stackrel{\wedge}{p_1}/(1-\stackrel{\wedge}{p_1})}{\stackrel{\wedge}{p_0}/(1-\stackrel{\wedge}{p_0})} \right] = \ln(OR) = \beta_1$$

Model with interaction

Let us fit the following model with interaction:

$$\log it(p) = \beta_0 + \beta_1 old _old + \beta_2 endo _vis + \beta_3 old _old *endo _vis (Interaction)$$

$$\ln \left[\frac{p}{1-p} \right] = \beta_0 + \beta_1 old _old + \beta_2 endo _vis + \beta_3 old _old *endo _vis$$

Given below are the odds ratios produced by the logistic regression in STATA. Now we can see that one can not look at the interaction term alone and interpret the results.

 $logistic\ alc_test\ old_old\ endo_vis\ old \it Xendo$

Logistic regre	Number LR chi2 Prob > Pseudo	2(3) chi2	s = = = =	194772 1506.73 0.0000 0.0064			
alc_test	Odds Ratio	Std. Err.	z	P> z	[95%	Conf.	Interval]
old_old endo_vis oldXendo		.0106487 .028952 .0314229	-3.58 28.61 2.22	0.000 0.000 0.027	.9404 1.595 1.007	5503	.9822243 1.709015 1.130781

With interaction terms, one has to be very careful when interpreting any of the terms involved in the interaction. For example, in the above model "endo_vis" can not be interpreted as the overall comparison of endocrinologist visit to "no endocrinologist visit," because this term is part of an interaction. It is the effect of endocrinologist visit when the "other" terms in the interaction term are at the reference values (ie. when old_old = 0). Similarly, the "old_old" cannot be interpreted as the overall comparison of "old_old" to "young-old". It is the effect of "old-old" when "other" terms in the interaction term is at the reference value (ie. endo_vis = 0).

To help in the interpretation of the odds ratios, let's obtain the odds of receiving an A1c-test for each of the 4 cells formed by this 2 x 2 design using the **adjust** command.

1) The odds ratio for "old_old" represents the odds ratio of old_old when there is no endocrinologist visit is = 0.9611. (Note: The odds ratio for the old_old, when endocrinologist visit = 0 can be read directly from the output which is 0.9611 (0.94, 0.98) because the interaction term and endocrinologist visit drop out). Interpretation: When there is no endocrinologist visit, the odds of a **old_old** having an A1c test is .96 times that of an young_old.

```
. display 2.16264/2.25011 .96112
```

2) the odds ratio "endo_vis" is the odds ratio formed by comparing an endocrinologist to no endocrinologist visit for young_old (because this is the reference group for old_old). (Note: The odds ratio for the endocrinologist, old_old = 0 can be read directly from the output which is 1.65 (1.60, 1.71) because the interaction term and endocrinologist visit drop out).

3) the odds ratio old_old seeing an endocrinologist compared to an young-old seeing an endocrinologist (not given in the logistic estimates)

```
. display 3.81176/3.71557
1.02588
```

Using logit estimates to do comparisons:

Logit estimate		8		LR cl Prob	er of obs ni2(3) > chi2 do R2	= = = =	194772 1506.73 0.0000 0.0064
alc_test	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
old_old endo_vis oldXendo _cons	0396509 .501553 .0652091 .8109787	.0110794 .017533 .0294392 .0069608	-3.58 28.61 2.22 116.51	0.000 0.000 0.027 0.000	0613 .4671 .0075 .7973	888 093	0179356 .5359171 .1229089 .8246216

a) risk of A1c test with old old =1 given endocrinologist visit =1

$$\log it(p_1) = \beta_0 + \beta_1 + \beta_2 + \beta_3$$

(b) risk of A1c test with old_old =0 given endocrinologist visit =1

$$\log it(p_0) = \beta_0 + \beta_2$$

The terms (β_1, β_3) are gone because old_old = 0 and the interaction term becomes zero.

Then take the differences:

$$\log it(p_{1}) - \log it(p_{o}) = [\beta_{0} + \beta_{1} + \beta_{2} + \beta_{3}] - [\beta_{0} + \beta_{2}]$$

$$\log it(p_{1}) - \log it(p_{o}) = \beta_{1} + \beta_{3}$$
If we represent logit as $\ln (p/1-p)$ then
$$\ln \left[\frac{p_{1}}{1-p_{1}} \right] - \ln \left[\frac{p_{0}}{1-p_{0}} \right] = [\beta_{0} + \beta_{1} + \beta_{2} + \beta_{3}] - [\beta_{0} + \beta_{2}] = \beta_{1} + \beta_{3}$$

Use of lincom:

One can use STATA's commands to produce this: Variance is calculated by lincom using matrix algebra.

```
. lincom old_old + oldXendo, or

( 1) old_old + oldXendo = 0

alc_test | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

(1) | 1.025888 .0279809 0.94 0.349 .9724863 1.082221
```

We can use the following table of ln odds for the cross classification of old_old and endo_vis

	Endo_vis = 1	Endo_vis = 0
$Old_old = 1$	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_0 + \beta_1$
$Old_old = 0$	$\beta_0 + \beta_2$	β_0

For example, the odds of A1c test among old_old and with endo_vis = 0 is: $\exp(\beta 0 + \beta 1)$

Results Summary in terms of odds ratios:

- a) The association between HbA1c test and old_old = 0.9611 among those not seeing an endocrinologist
- b) The association between HbA1c test and old_old = 1.0258 among those seeing an endocrinologist

Presenting estimates – Predicted Probabilities

As stated earlier, with interaction terms, co-efficients of variables that are involved in interactions do not have a straightforward interpretation. One way to interpret these models with interactions may be through predicted probabilities. If we write out the non-linear combinations of interest, STATA's nlcom will produce the point estimates and confidence intervals.

Comparisons with Probabilities:

Use the simple relationship between odds and risk.

If Odds =
$$\left[\frac{p}{1-p}\right]$$
 then $p = \left[\frac{odds}{1+odds}\right]$

Estimate change in probability of receiving A1c test for old_old when endocrinologist visit = 0:

In the same way estimate change in probability receiving A1c test for old_old when endocrinologist visit = 1:

```
 \begin{aligned} & \text{Exp} \left(\beta_0 + \beta_1 + \beta_2 + \beta_3\right) \\ & \quad . \quad \textit{display exp(.8109787+(-.0396509) + .501553 + .0652091)} \\ & \quad 3.8117557 \end{aligned} \\ & 1 + \exp\left(\left(\beta_0 + \beta_1 + \beta_2 + \beta_3\right) \\ & \quad . \quad \textit{display 1 + (exp(.8109787+(-.0396509) + .501553 + .0652091))} \\ & \quad 4.8117557 \end{aligned}
```

Numerator/Denominator:

```
. display 3.8117557/4.8117557
.79217565
```

Using nlcom - risk difference

```
. logit alc test old old
Iteration 0: \log likelihood = -117738.45
Iteration 1: log likelihood = -117729.9
Iteration 2: log likelihood = -117729.9
                                               Number of obs = 194772

LR chi2(1) = 17.10

Prob > chi2 = 0.0000

Pseudo R2 = 0.0001
Logit estimates
Log likelihood = -117729.9
  alc test | Coef. Std. Err. z P>|z| [95% Conf. Interval]
   old old | -.0422966 .0102205 -4.14 0.000 -.0623285 -.0222648
__cons | .8989483 .0063666 141.20 0.000 .88647 .9114266
p_1 - p_0 = \frac{1}{1 + \exp(-\beta_0 - \beta_1)} - \frac{1}{1 + \exp(-\beta_0)}
. nlcom 1/(1+exp(- b[old old] - b[ cons])) - 1/(1+exp(- b[ cons] ))
      nl 1: 1/(1+\exp(-b[old old] - b[cons])) - 1/(1+\exp(-b[cons]))
   alc_test | Coef. Std. Err. z P>|z| [95% Conf. Interval]
      _nl_1 | -.0087727 .002124 -4.13 0.000 -.0129356 -.0046098
cs alc test old old
               | Age >= 75
| Exposed Unexposed | Total
______
      Cases | 52487 85288 | 137775
Noncases | 22285 34712 | 56997
          Total | 74772 120000 | 194772
```

| Point estimate | [95% Conf. Interval]

chi2(1) = 17.13 Pr> chi2 = 0.0000

Risk | .7019606 .7107333 | .7073655

Risk difference | -.0087727 | -.0129356 -.0046098 | Risk ratio | .9876568 | .9818441 .9935039 | Prev. frac. ex. | .0123432 | .0064961 .0181559 | Prev. frac. pop | .0047385 |

It is probably useful to tabulate results as follows and then calculate predicted probabilities rather than odds.

	Old_old	Endo_vis	Cardio_vis	OldoldXendo	OldoldXCardio	Log-likelihood
1	X					
2	X	X				
3	X	X	X			
4	X	X	X	X		
6	X	X	X	X	X	

PROBIT REGRESSION

Probit Coefficients – Continuous variable (dxg):

. probit alc_test dxg

Iteration 0: log likelihood = -117738.45
Iteration 1: log likelihood = -117737.67
Iteration 2: log likelihood = -117737.67

alc_test | Coef. Std. Err. z P>|z| [95% Conf. Interval]

dxg | -.0017647 .0014136 -1.25 0.212 -.0045353 .0010059

_cons | .5486867 .0038349 143.08 0.000 .5411706 .5562029

Interpretation: The co-efficient for dxg (-.0017647) represents the effect of an infinitesimal change in \mathbf{x} on the standardized probit index. If \mathbf{dxg} is changed by an infinitesimal (or small) amount, the standardized probit index decreases, on average, by 0.001 of a standard deviation

Marginal Effects:

$$\frac{\partial Prob(y_i=1)}{\partial x_k} = \frac{\partial \Phi}{\partial x_k} = \phi(\mathbf{x}_i^{'}\boldsymbol{\beta}) \times \beta_k$$

where $\phi(\cdot)$ denotes the probability density function for the standard normal. The probability density function gives the height of the curve at the relevant index value $\mathbf{x}_i \boldsymbol{\beta}$.

What is the effect of a small change in dxg on the probability of A1c test?

a) Get mean of dxg

. sum dxg
Variable | Obs Mean Std. Dev. Min Max

```
dxg | 194772 1.687711 2.108394 .068 25.829
```

b) Evaluate mean standardized probit index at this mean

```
. display .5486867 + (-.0017647) *1.687711 .5457084
```

c) Find the height of the standardized normal curve at this point using the pdf table entries and use this to translate the probit coefficient into a probability effect

```
. display normd(.5457084)*-.0017647
-.00060662
```

So marginal effect of $dxg = -.0006 \sim -.001$; This implies that an infinitesimally small change in x *decreases* the probability of receiving hba1c test by **0.1%** at the average.

Check your hand calculation by dprobit (canned routine in STATA)

```
. dprobit alc test dxg
Iteration 0: log likelihood = -117738.45
Iteration 1: log likelihood = -117737.67
Iteration 2: log likelihood = -117737.67
Probit estimates
                                        Number of obs = 194772
                                        LR chi2(1) = 1.56
                                        Prob > chi2 = 0.2120
Log likelihood = -117737.67
                                        Pseudo R2 = 0.0000
alc test | dF/dx Std. Err. z P>|z| x-bar [ 95% C.I. ]
____
  dxg | -.0006066 .0004859 -1.25 0.212 1.68771 -.001559 .000346
_______
 obs. P | .7073655
pred. P | .7073668 (at x-bar)
 z and P>|z| are the test of the underlying coefficient being 0
```

use nlcom

```
__cons | .5486867 .0038349 143.08 0.000 .5411706 .5562029

. quietly sum dxg
. local dxgmean = r(mean)
. local xb _b[dxg]*`dxgmean'+_b[_cons]
. nlcom normd(`xb') * _b[dxg]

__nl_1: normd(_b[dxg]*1.68771118093987+_b[_cons]) * _b[dxg]

alc_test | Coef. Std. Err. z P>|z| [95% Conf. Interval]
__nl_1 | -.0006066 .0004859 -1.25 0.212 -.001559 .0003458
```

Marginal effects – dummy variable (old old):

For a dummy variable, it makes no sense to compute a derivative.

If
$$D_i = 1$$
 then: Prob $[y_i = 1 | \mathbf{x}_i, D_i = 1] = \Phi(\mathbf{x}_i \boldsymbol{\beta} + \delta)$

If
$$D_i = 0$$
 then: Prob[$y_i = 1 | x_i, D_i = 0$] = $\Phi(x_i \beta)$

The impact effect for gender is then given by the differences between the two CDF values:

$$\Delta = \Phi(\mathbf{x}_{i}^{'}\boldsymbol{\beta} + \delta) - \Phi(\mathbf{x}_{i}^{'}\boldsymbol{\beta})$$

Old-old Impact: What is the effect of old_old on the probability of A1c test?

a) Get mean of dxg

```
. sum dxg
Variable | Obs Mean Std. Dev. Min Max
-----dxg | 194772 1.687711 2.108394 .068 25.829
```

b) Evaluate mean standardized probit index at this mean and at old_old = 1 . display .5577377 + (-.0013964 *1.69) + (-.0250912) .53028658

c) Evaluate mean standardized probit index at this mean and at old_old = 0

```
. display .5577377 + (-.0013964 *1.69) .55537778
```

d) Find difference between the two CDF values (Notice the use of *norm* rather than normd)

```
. display norm(.53028658) - norm(.55537778)
-.00863848
```

Being an old_old decreases the probability of testing (holing comorbidity at the sample mean level) by .86 percentage points.

Check your hand calculation by using mfx compute command (canned routine in STATA)

```
. probit alc_test old_old dxg
```

```
Iteration 0: log likelihood = -117738.45
Iteration 1: log likelihood = -117729.41
Iteration 2: log likelihood = -117729.41
```

Probit estimates	Number of obs	=	194772
	LR chi2(2)	=	18.08
	Prob > chi2	=	0.0001
Log likelihood = -117729.41	Pseudo R2	=	0.0001

. mfx compute

```
Marginal effects after probit
y = Pr(alc_test) (predict)
= .70738065
```

•	dy/dx	Std. Err.	z	P> z	[95%	C.I.]	Х
old_old*	0086385 00048	.00213					.383895 1.68771

^(*) $\mbox{d} y/\mbox{d} x$ is for discrete change of dummy variable from 0 to 1

Use nlcom

. probit alc_test old_old dxg

```
Iteration 0: log likelihood = -117738.45
Iteration 1: log likelihood = -117729.41
Iteration 2: log likelihood = -117729.41
```

Number of obs = 194772 LR chi2(2) = 18.08 Prob > chi2 = 0.0001 Pseudo R2 = 0.0001 Probit estimates Log likelihood = -117729.41______ alc test | Coef. Std. Err. z P>|z| [95% Conf. Interval] ______ . quietly sum dxg \cdot local dxgmean = r(mean) . local xb1 _b[dxg]*`dxgmean'+_b[old_old]*1 + _b[_cons]
. local xb0 _b[dxg]*`dxgmean'+_b[old_old]*0 + _b[_cons]
. nlcom norm(`xb1') - norm(`xb0') nl 1: norm(b[dxg]*1.68771118093987+b[old old]*1 + b[cons]) norm(b[dxg]*1.68771118093987+ b[old old]*0 + > b[cons]) alc test | Coef. Std. Err. z P>|z| [95% Conf. Interval] _____ _nl_1 | -.0086385 .0021282 -4.06 0.000 -.0128097 -.0044672

PROBIT REGRESSION with Interaction Effects

. probit alc_test old_old endo_vis oldXendo dxg

Iteration 0: log likelihood = -6046.3976
Iteration 1: log likelihood = -5996.9948
Iteration 2: log likelihood = -5996.8906
Iteration 3: log likelihood = -5996.8906

Probit estimates
Number of obs = 10000
LR chi2(4) = 99.01
Prob > chi2 = 0.0000
Log likelihood = -5996.8906
Pseudo R2 = 0.0082

alc_test	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
old_old endo_vis oldXendo dxg _cons	.0171063 .3584812 0185596 0025473 .4820616	.0298301 .0445311 .0753691 .006227	0.57 8.05 -0.25 -0.41 23.10	0.566 0.000 0.805 0.682 0.000	0413595 .2712019 1662804 014752 .4411563	.0755722 .4457606 .1291611 .0096574 .5229668

. mfx compute

Marginal effects after probit
 y = Pr(alc test) (predict)

= .7091 $\overline{2}$ 011

	4 '	Std. Err.		-	-	X
'		.0102				.3816

Use the formula and get correct marginal effects

Think of all the possible contrasts and evaluate the estimated equation for

- 1) for Old old = 1 and endo vis = 1 (xb1)
- 2) for old old = 1 and endo vis = 0 (xb2)
- 3) for old old = 0 and endo vis = 1 (xb3)
- 4) for old old = 0 and endo vis = 0 (xb4)
- 5) calculate mean of dxg
- 6) evaluate the following formula using nlcom

```
\left[\frac{\Delta^2 F(u)}{\Delta x_1 \Delta x_2}\right] = \Phi\left(\beta_o + \beta_1 + \beta_2 + \beta_3 + \beta_4 * dxgmean\right) - \Phi\left(\beta_o + \beta_1 + \beta_4 * dxgmean\right)
-\Phi(\beta_o + \beta_2 + \beta_4 * dxgmean) + \Phi(\beta_o + \beta_4 * dxgmean)
.quietly sum dxg
\cdot local dxgmean = r(mean)
. local xb1 /*
> */ _b[old_old] /*

> */ + _b[endo_vis] /*

> */ + _b[oldXendo] /*

> */ + _b[dxg]*`dxgmean' /*

> */ + _b[_cons]
. local xb2 /*
> */ _b[old_old] /*
> */ + _b[dxg]*`dxgmean' /*
> */ + _b[_cons]
. local xb3 /*
> */ + _b[dxg]*`dxgmean' /*
> */ + _b[_cons]
. local xb4 /*
> */ _b[dxg]*`dxgmean' /*
> */ + _b[_cons]
. nlcom norm(xb1') - norm(xb2') - norm(xb3') + norm(xb4')
_nl_1: norm(_b[old_old] + _b[endo_vis] + _b[oldXendo] + b[dxg]*1.672810001328588
> + b[cons]) - norm(b[old old] + b[dxq]*1.672810001328588 + b[cons]) -
> norm(_b[endo_vis] + _b[dxg]*1.672810001328588 + _b[_cons]) +
> norm(b[dxg]*1.672810001328588 + b[ cons])
```

.....

alc_test +-	Coei.	Std. Err.	Z 	P> z 	[95% Conf.	Interval]
_nl_1	0064721	.0221576	-0.29	0.770	0499002	.036956

Interpretation:

The interaction effect is negative and insignificant. In our case, all the approaches to estimate marginal effect give similar results.

Check with Dr. Nortons's inteff program

. probit alc_test old_old endo_vis oldXendo dxg

Iteration	0:	log	likelihood	=	-6046.3976
Iteration	1:	log	likelihood	=	-5996.9948
Iteration	2:	log	likelihood	=	-5996.8906
Iteration	3:	log	likelihood	=	-5996.8906

Number of obs	=	10000
LR chi2(4)	=	99.01
Prob > chi2	=	0.0000
Pseudo R2	=	0.0082
	LR chi2(4) Prob > chi2	Prob > chi2 =

a1c_test	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
old_old	.0171063	.0298301	0.57	0.566	0413595	.0755722
endo_vis	.3584812	.0445311	8.05	0.000	.2712019	.4457606
oldXendo	0185596	.0753691	-0.25	0.805	1662804	.1291611
dxg	0025473	.006227	-0.41	0.682	014752	.0096574
_cons	.4820616	.0208704	23.10	0.000	.4411563	.5229668

[.] inteff alc_test old_old endo_vis oldXendo $\ensuremath{\text{dxg}}$, Probit with two dummy variables interacted

Variable	Obs	Mean	Std. Dev.	Min	Max
_probit_ie	10000	006472	.0000176	0066553	0064586
_probit_se		.0221575	.0000908	.0220888	.0231249
_probit_z		292094	.000398	292395	2877969

LOGISTIC REGRESSION – MARGINAL EFFECTS

$$prob(y_i = 1) = \frac{exp(\mathbf{x}_i'\boldsymbol{\beta})}{1 + exp(\mathbf{x}_i'\boldsymbol{\beta})} \quad and \quad 1 - prob(y_i = 1) = \frac{1}{1 + exp(\mathbf{x}_i'\boldsymbol{\beta})}$$

Continuous variable:

The effect of a small change in the independent variable on the log odds ratio of the event occurring.

$$\frac{\partial Prob(y_i=1)}{\partial x_k} = \frac{\partial F}{\partial x_k} = \frac{exp(\boldsymbol{x}_i \boldsymbol{\beta})}{1 + exp(\boldsymbol{x}_i \boldsymbol{\beta})} * \frac{exp(\boldsymbol{x}_i \boldsymbol{\beta})}{1 + exp(\boldsymbol{x}_i \boldsymbol{\beta})} * \beta_k$$

The marginal effect is then simply the gradient of the logistic CDF at this mean value. It can also be represented by

$$\frac{\partial Prob(y_i = 1)}{\partial x_k} = P_i \times (1 - P)_i \times \beta_k = \frac{1}{1 + exp - (\mathbf{x}_i' \boldsymbol{\beta})} * \frac{1}{1 + exp(\mathbf{x}_i' \boldsymbol{\beta})} * \beta_k$$

. logit a1c_test dxg

Iteration 0: log likelihood = -117738.45
Iteration 1: log likelihood = -117737.66
Iteration 2: log likelihood = -117737.66

Logit estimates	Number of obs	=	194772
	LR chi2(1)	=	1.57
	Prob > chi2	=	0.2101
Log likelihood = -117737.66	Pseudo R2	=	0.0000

alc_test	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
٠. ر		.002354			0075676 .8751145	.0016599 .9001187

. mfx compute

	4 .	Std. Err.		-	-	
'		.00049				

Hand Calculation:

a) Get mean of dxg

b) Evaluate logistic CDF at this mean and take exponent of the negative of this

.
$$display exp(-((-.0029539 *1.687711) + .8876166))$$

.41369294

c) Evaluate logistic CDF at this mean and take exponent

```
. display exp((-.0029539 *1.687711) + .8876166) 2.4172518
```

d) Multiply: 1/(1+4136) * 1/1+2.4172) and the co-efficient of the dxg variable

```
. display (1/(1+.41369294)) * (1/(1+2.4172518)) * -.0029539 -.00061145
```

With nlcom:

Dummy variable - old old

```
. logit alc test dxg old old
Iteration 0: \log likelihood = -117738.45
Iteration 1: log likelihood = -117729.4
Iteration 2: log likelihood = -117729.4
                                       Number of obs = 194772

LR chi2(2) = 18.10

Prob > chi2 = 0.0001

Pseudo R2 = 0.0001
Logit estimates
Log likelihood = -117729.4
                                       Pseudo R2
                                                        0.0001
  alc_test | Coef. Std. Err. z P>|z| [95% Conf. Interval]
. mfx compute
Marginal effects after logit
  y = Pr(a1c_test) (predict)
      = .7073\overline{8}471
```

•	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	X
dxg	0004868 0086395	.00049					1.68771 .383895

(*) dy/dx is for discrete change of dummy variable from 0 to 1

Hand Calculation:

a) Get mean of dxg

```
. sum dxg
Variable | Obs Mean Std. Dev. Min Max
-----dxg | 194772 1.687711 2.108394 .068 25.829
```

b) Evaluate function when old old = 1

c) Evaluate function when old old = 0

$$P(Y=1 | old_old, dxg=1.6877) = \frac{1}{1 + \exp(-(\beta_0 + \beta_1(1.68)))}$$
. display exp(-(.9026764 + (-.0023518*1.687711)))
.4070956
. display 1/(1+.4070956)
.71068377

d) The difference between the two values is the difference in the probability of receiving hba1c test because of age.

```
. display .70204431-.71068377 -.00863946
```

With nlcom:

alc_test	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
_nl_1	0086395	.0021281	-4.06	0.000	0128104	0044685

LOGISTIC REGRESSION with Interaction Effects

Use the formula and get correct marginal effects

$$\[\frac{\Delta^{2} F(u)}{\Delta x_{1} \Delta x_{2}} \] = \left[\frac{1}{1 + \exp{-(\beta_{o} + \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} * dxgmean)}} \right] - \left[\frac{1}{1 + \exp{-(\beta_{o} + \beta_{1} + \beta_{4} * dxgmean)}} \right] - \left[\frac{1}{1 + \exp{-(\beta_{o} + \beta_{1} + \beta_{4} * dxgmean)}} \right] + \left[\frac{1}{1 + \exp{-(\beta_{o} + \beta_{4} * dxgmean)}} \right] + \left[\frac{1}{1 + \exp{-(\beta_{o} + \beta_{4} * dxgmean)}} \right]$$

Think of all the possible contrasts and evaluate the estimated equation for

- 1) for Old old = 1 and endo vis = 1 (xb1)
- 2) for old old = 1 and endo vis = 0 (xb2)
- 3) for old old = 0 and endo vis = 1 (xb3)
- 4) for old old = 0 and endo vis = 0 (xb4)
- 5) calculate mean of dxg
- 6) evaluate the following formula using nlcom
- . logit alc test old old endo vis oldXendo dxg

```
Iteration 0: log likelihood = -6046.3976
Iteration 1: log likelihood = -5997.3365
Iteration 2: log likelihood = -5996.8874
Iteration 3: log likelihood = -5996.8873
```

LR chi2(4)	=	99.02
Prob > chi2	=	0.0000
Pseudo R2	=	0.0082
	Prob > chi2	Prob > chi2 =

alc_test	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
old_old endo_vis oldXendo dxg _cons	.0281896 .606646 0309183 0043481 .7776468	.0491501 .0770566 .1305416 .0104154 .0344863	0.57 7.87 -0.24 -0.42 22.55	0.566 0.000 0.813 0.676 0.000	0681429 .4556177 2867751 0247619 .7100549	.1245221 .7576742 .2249385 .0160658 .8452387

[.] mfx compute

Marginal effects after logit

```
y = Pr(alc test) (predict)
                = .7096\overline{4}843
variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X
 _____
old_old*| .0058002 .01009 0.57 0.565 -.013978 .025578 .3816
endo_vis*| .1144238 .01281 8.93 0.000 .089309 .139538 .1888
oldXendo*| -.0064064 .0272 -0.24 0.814 -.059716 .046903 .0643
dxg | -.0008959 .00215 -0.42 0.676 -.005102 .00331 1.67281
         ______
 (*) dy/dx is for discrete change of dummy variable from 0 to 1
 . *-----
 . * nlcom to get differences in p
 . * Old-old
 . quietly sum dxg
 . local dxgmean = r(mean)
 . local xb1 /*
> */ _b[old_old] /*

> */ + _b[endo_vis] /*

> */ + _b[oldXendo] /*

> */ + _b[dxg]*`dxgmean' /*

> */ + _b[_cons]
 . local xb2 /*
> */ _b[old_old] /*
> */ + _b[dxg]*`dxgmean' /*
> */ + _b[_cons]
 . local xb3 /*
> */ _b[endo_vis] /*
> */ + _b[dxg]*`dxgmean' /*
> */ + _b[_cons]
 . local xb4 /*
> */ _b[dxg]*`dxgmean' /*
> */ + _b[_cons]
 . nlcom 1/(1+(exp(-(`xb1')))) - 1/(1+(exp(-(`xb2')))) - 1/(1+(exp(-(`xb3')))) + 1/(1+(exp(-(`xb1'))))) + 1/(1+(exp(-(`xb1')))) + 1/(1+(exp(-(`xb1'))))) + 1/(1+(exp(-(`xb1')))) + 1/(1+(exp(-(`xb1'))))) + 1/(1+(exp(-(`xb1')))) + 1/(1+(exp(-(`xb1'))))) + 1/(1+(exp(-(`xb1')))) + 1/(1+(exp(-(`xb1'))))) + 1/(1+(exp(-(`xb1'))))) + 1/(1+(exp(-(`xb1'))))) + 1/(1+(exp(-(`xb1')))) + 1/(1+(exp(-(`xb1'))))) + 1/(1+(exp(-(`xb1')))) + 1/(1+(exp(-(`xb1'))) + 1/(1+(exp(-(`xb1'))) + 1/(1+(exp(-(`xb1'))) + 1/(1+(exp(-(`xb1'))) + 1/(1+(exp(-(`xb1'))) + 1/(1+(exp(-(`xb1'))) + 1/(1+(ex
1/(1+(exp(-(
> `xb4'))))
                    nl 1: 1/(1+(exp(-( b[old old] + b[endo vis] + b[oldXendo] +
  b[dxg]*1.67281000132858
b[ cons])))) - 1/(
> 1 + (exp(-(b[endo vis] + b[dxg]*1.672810001328588 + b[cons])))) + 1/(1 + (exp(-b[endo vis] + b[dxg]*1.672810001328588 + b[cons]))))) + 1/(1 + (exp(-b[endo vis] + b[dxg]*1.672810001328588 + b[cons]))))))))
 (b[dxq]*1.672
> 810001328588 + b[ cons]))))
 ______
       alc_test | Coef. Std. Err. z P>|z| [95% Conf. Interval]
                _nl_1 | -.0065047 .022156 -0.29 0.769 -.0499296 .0369201
```

.....

REFERENCES:

Ai C, Norton EC: Interaction Term in Logit and Probit Models. Economic Letters 80:123-129.

Norton EC, Ai. C: Computing interaction effects and standard errors in logit and probit models *The Stata Journal*, 2004, 4(2):103-116