
Deepak.Alur@sun.com

Patterns & Design Expertise Center

Sun Software Services

Core J2EE Patterns, Frameworks and
Micro Architectures

January 2004

 Agenda
● Patterns

● Core J2EE Pattern Catalog Background
● J2EE Progressive Refactoring
● Pattern Frameworks

● Micro Architecture
– Web Worker Micro Architecture Example
– Messaging Micro Architecture Example

● Q&A

Architectural Decisions Produce
Varying Results

.Net J2EE

What Is A Pattern?
• “Solution to a recurring problem in a context”

➢ Context : What is the environment like?
➢ Problem : What do I want to do?
➢ Solution : How do I do it?

Patterns are...
• Abstractions
• Discovered, not created
• Difficult to see the appropriate

granularity
• Mined from good designs
• Refactoring targets

Core J2EE Patterns

● Core J2EE Patterns are platform patterns.
– The context is bounded by the J2EE platform
– Built upon non-platform patterns – GoF

Core J2EE Patterns Book
● 1st Edition June 2001
● 15 Patterns categorized by

tiers:
– Presentation
– Business
– Integration

● Lots of Code Samples
● Design Considerations
● Bad Practices
● Refactorings

● 2nd Edition JavaOne, June 2003
● 21 patterns
● Micro-architecture

Core J2EE Patterns Book

Client Tier
Browser, Applets, Applications, Clients

Presentation Tier
JSP, Servlets, UI Elements

Business Tier
EJB and Business Objects

Integration Tier
JDBC, JMS, Connectors

Resource Tier
Databases, Systems Legacy

J2EE Pattern Catalog
Addresses 3 Tiers

Pattern Format

Extensibility

● Problem
● Forces
● Solution

– Structure
– Interaction

● Consequences
● Strategies

Pattern Strategies

● Pattern is abstract and a strategy is
(more) concrete

Extensibility

Pattern Relationships

Presentation-Tier Patterns
● Intercepting Filter
● Front Controller
● Composite View
● View Helper
● Service to Worker
● Dispatcher View
● Context Object
● Application Controller

new

new

Business Tier Patterns
● Business Delegate

● Session Facade

● Service Locator

● Transfer Object

● Composite Entity

● Transfer Object Assembler

● Value List Handler

● Business Object

● Application Service new

new

Integration Patterns
● Data Access Object
● Service Activator
● Domain Store
● Web Service Broker

new

new

New Patterns Facts
● Patterns represent abstractions emerging from

using existing patterns in complex
applications and flesh out pattern language
(Context Object, Application Controller,
Business Object, etc.).

● New patterns rely on POJO stereotype

● New patterns identify a “web container only”
scenario

● Domain Store addresses Transparent
Persistence (JDO and the like)

● Updated for J2EE 1.4 and Web Services

Presentation Tier Patterns
● Intercepting Filter
● Front Controller
● Context Object
● Application Controller
● View Helper
● Composite View
● Service To Worker
● Dispatcher View

Context Object
● Problem:

– You want to avoid using protocol-specific system
information outside of its relevant context

● Forces:
– You have components and services that need access to

system information

– You want to decouple application components and
services from the protocol specifics of system
information

– You want to expose only the relevant APIs within a
context

Context Object
● Solution:

– Use a Context Object to encapsulate state in a
protocol-independent way to be shared
throughout your application

Context Object Strategies
● Request Context Strategies

– Request Context Map Strategy

– Request Context POJO Strategy

– Request Context Validation Strategy
● Configuration Context Strategies

– JSTL Configuration Strategy
● Security Context Strategies

● General Context Object Strategies

– Context Object Factory Strategy

– Context Object Auto-population Strategy

Application Controller

● Problem:
– You want to centralize and modularize action

and view management

● Forces:
– You want to reuse action-management and

view-management code
– You want to improve code modularity and

maintainability
– You want dynamic lookup and dispatch to target

Application Controller
● Solution:

– Use an Application Controller to centralize
retrieval and invocation of request-processing
components, such as commands and views.

Application Controller:
Command Handler Strategy

Business Tier Patterns
● Business Delegate

● Service Locator

● Session Facade

● Business Object

● Application Service

● Composite Entity

● Transfer Object

● Transfer Object Assembler

● Value List Handler

Business Object
● Problem:

– You have a conceptual domain model with
business logic and relationships

● Forces:
– You have a conceptual model containing

structured, interrelated composite objects,
complex business logic, validation, rules

– You want to centralize business logic and state
in an application

– You want to increase reusability of business
logic and avoid duplication of code

Business Object
● Solution:

– Use Business Objects to separate business data
and logic using an object model

Application Service
● Problem:

– You want to centralize business logic across
several business-tier components and services

● Forces:
– You want to minimize business logic in service

facades
– You have business logic acting on multiple

Business Objects or services
– You want to encapsulate use case-specific logic

outside of individual Business Objects

Application Service

● Solution:
– Use an Application Service to centralize and

aggregate behavior to provide a uniform service
layer

Integration Tier Patterns

● Data Access Object
● Service Activator
● Domain Store
● Web Service Broker

Domain Store
● Problem:

– You want to separate persistence from your
object model

● Forces:
– You want to avoid putting persistence

details in your Business Objects
– You do not want to use entity beans
– Your application might be running in a web

container
– Your object model uses inheritance and

complex relationships

Domain Store
● Solution:

– Use Domain Store to separate persistence from the
object model

Web Service Broker
● Problem:

– You want to provide access to one or more
services using XML and web protocols

● Forces:
– You want to reuse and expose existing services

to clients
– You want to monitor and potentially limit the

usage of exposed services
– Your services must be exposed using open

standards

Web Service Broker

● Solution:
– Use a Web Service Broker to expose and broker

one or more services using XML and web
protocols

Web Service Broker: Strategies

● Custom XML Messaging Strategy
● Java Binding Strategy
● JAX-RPC Strategy

Agenda
● Patterns

● Core J2EE Pattern Catalog Background
● J2EE Progressive Refactoring Scenarios
● Pattern Frameworks

● Micro Architecture
– Web Worker Micro Architecture Example
– Messaging Micro Architecture Example

● Q&A

J2EE Refactoring
● 14 Refactorings in the book
● Presentation Tier:

– Hide Presentation Tier specifics from Business
Tier

– Introduce Synchronizer Token

● Business Tier:
– Wrap Entities with Session
– Merge Session Beans

Hide Presentation Tier specifics...

Presentation
Component

Business
Component

HttpServletRequest HttpServletRequest

Presentation
Tier

Business
Tier

Presentation
Component

Business
Component

HttpServletRequest HttpServletRequest

Presentation
Tier

Business
Tier

Presentation
Component

Business
Component

HttpServletRequest UserInfo

Presentation
Tier

Business
Tier

Presentation
Component

Business
Component

HttpServletRequest UserInfo

Presentation
Tier

Business
Tier

Introduce Synchronizer Token

Duplicate
Allowed

Controller

Presentation
Tier

JSP
Client

Request

Duplicate

2

1

2

1
Controller

Presentation
Tier

JSP
Client

Request

Duplicate

2

1

2

1

2

1
Controller

Presentation
Tier

JSP
Client

Request

Duplicate

2

1

2

1

Duplicate
Disallowed

No
Access

TOKEN
TOKEN

Wrap Entities With Session

Entity
Bean

A

Entity
Bean

B

Entity
Bean

C

Client

Business
Logic

Transaction
Logic

Client
Busine ss

Logic

Session
Facade

Entity
Bean

A

Entity
Bean

B

Entity
Bean

CTransaction Logic:
Bean Managed
or
Container Managed

Business
Tier

Business
Tier

Business
Tier

Client or
Presentation

Tier

Client or
Presentation

Tier

Client or
Presentation

Tier

Client or
Presentation

Tier

Merge Session Beans

Business
Tier

Business
Tier

Client or
Presentation

Tier

Client or
Presentation

Tier

Client or
Presentation

Tier

Client or
Presentation

Tier

Business
Tier

Business
Tier

Client
Interaction

#1

Client
Interaction

#2

Client
Interaction

#3

Client
Interaction

#1

Client
Interaction

#2

Client
Interaction

#3

Session

Session

Session

Entity

Entity

Enti ty

Facade

Facade

Enti ty

Enti ty

Enti ty

Progressive Refactoring Scenarios
● Direct Access
● Introduce DAO
● Introduce Application Service
● Introduce Service Facade
● Introduce Business Objects

Direct Access

Database

Command

Helper

Introduce DAO

Database

Command

Helper

DAO

Introduce Application Service
POJO Architecture

Database

Command

Helper

DAOApplication
Service

Introduce Application Service
EJB Architecture

Command

Business
Delegate

Session
Facade

Helper
Application

Service

DAO

Design Note: Service Facades

● Remote and non-Remote business tier

<<RemoteSession>>
RemoteFacade

<<LocalSession>>
LocalFacade

<<POJO>>
POJOFacade

<<SessionEJB>>
SessionFacade

ServiceFacade

Introduce Service Facade
Non-Remote Business Tier

Service Facade >>
 Local Facade >>
 Local Session Bean | POJO

Command

Service
Facade

Helper

DAO

Introduce Service Facade
Remote Business Tier

Physical
Boundary

Service Facade >>
 Remote Facade >>
 Remote Session Bean

Command

Business
Delegate

Service
Facade

Helper

DAO

Introduce Business Objects

Command

Business
Delegate

Session
Facade

Business
Object

Domain
Store

Helper
Application

Service

DAO

 Agenda
● Patterns

● Core J2EE Pattern Catalog Background
● J2EE Progressive Refactoring Scenarios
● Pattern Frameworks

● Micro Architecture
– Web Worker Micro Architecture Example
– Messaging Micro Architecture Example

● Q&A

Pattern Framework
● Set of cooperating patterns
● Targeting macro problem
● Basis for pattern driven design

Pattern Realization
● Realizing patterns to code

 Agenda
● Patterns

● Core J2EE Pattern Catalog Background
● J2EE Progressive Refactoring Scenarios
● Pattern Frameworks

● Micro Architecture
– Web Worker Micro Architecture Example
– Messaging Micro Architecture Example

● Q&A

Micro Architectures
● Micro-architectures are building blocks for designing

applications

● They represent a higher level of abstraction than the
individual patterns described in the catalog, and are
expressed by a combination of patterns to solve a
problem

● Micro-architecture is a prescriptive design leveraging
patterns to solve a larger problem, such as designing a
subsystem

● Micro-Architectures:

▬ WebWorker Micro Architecture
▬ Messaging Micro Architecture

Micro Architectures

Web Worker Micro Architecture
● Problem:

– How do you integrate a J2EE application and a workflow
system and have the workflow system direct users to the
appropriate web page

User 1 User 2 User 3

J2EE

Use Case 1
Page
Logic

Use Case 2
Page
Logic

Use Case 3
Page
Logic

Workflow

Hire Employee Workflow

Hire Employee Collaboration
with Adapters

Action Adapter Class Diagram
Application
Controller

Service
Activator

Business
Delegate

Work Adapter Class Diagram

Application Controller

Messaging Micro Architecture

● Messaging >> Async, Web Services
● Problem:

– How do you provide async, doc-based web
services in J2EE

– How do you orchestrate these web services

Async WS Orchestration
With J2EE

Invoke

Async Reply
(sometime later)Business

Process
Orchestration

(BPEL)

J2EE
WebService

J2EE
WebService

J2EE
WebService

Shipping Example

Shipping Example

Shipper Transporter

Async Web Service Orchestration
● Shipping Company contracts Transporters

to ship products

Client Web App Orchestration
Server

Transport 1

Transport 2

Transport 3

Micro ArchitectureMicro Architecture

Bid Request

Bid

Micro Architecture composed of Patterns

Context
Object

Intercepting
Filter

Web Service
Broker

Application
Controller

Transporter
Message Context

Message Handler

Service Endpoint, Broker/Mediator, Validation
Routing

Service
Activator

Orchestration
Server

Application
Service

Service

Web Service Broker

Get Bids Interaction Eye-Chart

Get Bids Interaction – Part 1
Transporter
Web Service

Get Bids Interaction – Part 2

Create Bid Interaction Eye-Chart

Create Bid Interaction – Part 1
Bid App

Create Bid Interaction – Part 2

Bid App

ACE: Design To Deploy Service
● Rapid intuitive design of enterprise

applications
● Focus on design rather than coding
● Builds upon best practices, patterns

and frameworks
● Fewer resources, faster development
● Automated deployment

DASL: Specification Language
● ACE uses a high level domain

modeling language called DASL
● DASL is used to specify:

– Business Objects, relationships
– Core reusable business logic
– User interaction
– Transactions and Persistence

DASL: Graphic tools

Summary
● Patterns are great! Use them effectively to improve

software quality

– Build New Architecture
– Analyse / understand existing Architecture
– Refactor

● Avoid re-inventing the wheel

● Promote design re-use

● Increase developer productivity, communication

● Micro Architectures leverage patterns

● Large and growing community around patterns

Stay Connected:

● Check out CJP:
– http://www.corej2eepatterns.com

● Subscribe:
– http://archives.java.sun/j2eepatterns-

interest.html
● Write to us:

– j2eepatterns-feedback@sun.com
● Java.Net – Patterns Community

deepak.alur@sun.com
January 2004

Thanks!

