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Abstract

The objective of traffic engineering (TE) in telecommunication networks is to maximize the
profit, i.e. the difference between revenue from user charges and the total network cost.
The constraints of TE include requirements on service performance, i.e. Quality of Service
(QoS), Quality of Experience (QoE) and Grade of Service (GoS). TE relies on a relationship
between three models: traffic model, network model, and performance model. The choice of
performance model involves an accuracy-simplicity dilemma.

1 Fundamentals

1.1 Definition

Traffic Engineering (TE) for Internet is defined in RFC 3272 and involves both capacity
management and traffic management. Capacity management includes capacity planning,
routing control, and resource management. Traffic management includes (1) nodal traffic
control functions such as traffic conditioning, queue management, scheduling, and (2) other
functions that regulate traffic flow through the network or that arbitrate access to network
resources.

1.2 Tradeoff between effectiveness and simplicity

TE is concerned with finding an efficient tradeoff between effectiveness (in terms of proximity
to optimality) and simplicity (in terms of time and space complexity) for the TE solution.
A highly effective TE solution is desired since it means that fewer call requests needs to
be rejected leading to increased revenue. Moreover, expansion of the network capacity is
driven by the increase in network demand. An effective TE solution allows longer time
periods between capacity upgrades which means longer time periods for the depreciation of
the capital expenditures.

However, increased effectiveness normally requires a more complex computer-based solu-
tion. A complex solution has larger capital expenditures (e.g. implementation costs) and
operational expenditures (e.g. system maintenance costs). A complex solution is based on
a more complex system model and/or computation algorithm that requires longer execution
times and/or larger memory space. Note that the system response time requirements restrict
the complexity of the TE algorithms. Therefore, the chosen TE solution should provide a
good balance between the potential for large revenue (measured by TE effectiveness) against
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the expected costs (measured by TE complexity). TE planning involves finding the set of TE
algorithms with maximal effectiveness that provides the desired TE complexity.

1.3 Service guarantees

The network is offered flows from several service classes. Each service class should be given
end-to-end performance guarantees in terms of QoS and GoS metrics on the packet/burst
and call level respectively. QoS metrics include loss, delay, delay-jitter and throughput guar-
antees. Packet loss can occur due to buffer overflow or delay bound violation. Packet delay is
composed of a fixed part due to packetization, propagation, transmission, reassembly, switch-
ing, and a variable part due to stochastic queueing effects. Packet delay-jitter is defined as
the difference between delays of any two packets. A statistical service specifies QoS by loss
probability, delay quantile, and delay-jitter quantile, while a deterministic service specifies
QoS by zero loss, worst-case delay, and maximum difference between delays of any two pack-
ets. GoS metrics includes flow request blocking probability and flow setup delay specified as
a quantile.

The service-level specification (SLS) is part of the service-level agreement (SLA) negoti-
ated at flow set up. The contents of the SLS include the essential QoS-related parameters,
including scope and flow identification, traffic conformance parameters, and service guaran-
tees [189]. Specifically, the traffic conformance parameters include five parameters: the peak
rate p (bytes/s), maximum burst size b (bytes), mean rate r (bytes/s), minimum policed unit
m (bytes), and maximum packet size M (bytes).

1.4 Resource management policy

The resource management policy relies on a relationship between three models: traffic model,
network model, and performance model, see Figure 1. To enable effective and efficient control
of network resources (router CPU and buffer capacities, link capacities) all these models need
to be sufficiently accurate but also simple enough to limit the delay for processing of flow
requests.

1.4.1 Traffic model

A realistic traffic model is a prerequisite for accurate performance evaluation. The traffic
model consists of five layers: physical network, virtual network, call, burst, and packet layers
[87], see Figure 2. Internet traffic measurements and advancements in modeling the last two
decades have revealed that traffic arrivals on all five layers could be self-similar. This means
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the statistical variability in the arrival process carries over from small to larger time scales.
Likewise, the traditional models for call holding times used in telephone networks are not
adequate for some significant Internet services.

1.4.2 Network model

We adopt the TE and QoS optimization network model outlined by Ash [12]:

• Physical network (PN) implemented by optical cross connects and fibers;

• Virtual networks (VNs) implemented by GMPLS;

• IP transport within each VN implemented by MPLS; and

• Differentiated services.

DiffServ manages aggregates of flows to achieve scalability. The per-hop-behavior (PHB) of
the aggregate flow defines its scheduling treatment in the routers 1 and the traffic conditioning
rule at ingress and egress boundary nodes.

We assume the network runs the IP/MPLS [172] or IP/ATM protocols [90, 7]. MPLS is
a technology that integrates label-swapping paradigm with network-layer routing. The Label
Switching Router (LSR) has the same function as the ATM switch. The LSP between two
routers can be the same as the layer 3 hop-by-hop route, or the sender LSR can specify an
explicit route for the LSP. LSPs in MPLS networks are similar to Virtual Channel Connections
(VCCs) in ATM networks. Traffic engineered (TE) LSPs in MPLS networks correspond to
Virtual Path Connections (VPCs) in ATM networks. TE-LSPs carry multiple LSPs in MPLS
networks. VPCs carry multiple VCCs in ATM networks.

1.4.3 Performance model

The choice of performance model involves an accuracy-simplicity dilemma. The model needs
to be both accurate and simple. High accuracy is desired to admit correct and efficient
control/allocation decisions. High simplicity (low computational complexity) is required since
decisions should be made fast enough to be acceptable by the users. To obtain a solution
feasible in real-time, approximations are normally introduced. However, this will reduce the
network utilization and thereby the revenue for the network operator.

2 Hierarchical resource management model

Hierarchical layers of dynamic resource management are performed at decreasing time scales,
see Figure 3. Resource management at the higher layer aims at providing sufficient perfor-
mance at the lower layer.

Resource management at each layer can be done at regular time intervals or be triggered
by changes in traffic or capacity at the higher layer.

1In the literature, the term “router” or “gateway” is used in an internetworking environment, while “label
switching router” and “switch” is used in the context of MPLS and ATM networks, respectively. In this project
we refer to switching elements as “routers”.
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2.1 Physical and virtual network layer

We assume a set of virtual networks (VNs) overlay the physical domain network. A VN
consists of a set of VN nodes interconnected by a set of VN links. The topology of the VN
may be different from the physical network topology. A VN link defines a path (consisting of
one or more physical links) between two VN nodes.

The Virtual Path (VP) concept may be used in IP/MPLS and IP/ATM networks [130].
A VP provides transport of TE-LSP and carries multiple LSPs. A series of VN links defines
the VP routing path.

On the packet layer, the division of physical link capacity among multiple VNs is efficiently
handled by the WFQ packet scheduler due to its sharing and isolation capabilities. On the
call layer, the division of physical link capacity can be implemented by complete sharing,
complete partitioning or partial sharing.

Network design is a crucial function in our TE framework. The design is carried out
on the physical network, virtual network and call layer. Design on the physical and virtual
network layers determines the topology and the set of link capacities. Physical network design
is carried out on the long-term time scale. Virtual network design is carried out on multiple
time scales [68]:

• Successive capacity reallocation redistributes capacity on a fixed virtual network topol-
ogy;

• Successive topology reconfiguration establishes and/or tears down TE-LSPs, within an
existing virtual network topology;

• Global reconfiguration consists of both global capacity reconfiguration and global topology

reconfiguration. This activity potentially affects all the TE-LSPs in the network;

• Long-term planning derives a static (or general) set of TE-LSPs and initial or minimum
capacity assignments for them.

Successive capacity reallocation relies on policies for set up and teardown of TE-LSPs,
and the policy for routing of the new TE-LSPs [6]. Constraint-based routing selects a network
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path in the physical network for the TE-LSP subject to a set of constraints [17]. Constraint-
based routing generalizes QoS routing by finding routes for traffic trunks instead of micro
flows.

2.2 Call layer

2.2.1 Multi-constrained optimal path problem

QoS routing can be modeled as a multi-contrained optimal path (MCOP) problem. We
formulate the MCOP problem as follows [113]. Let G(V,E) denote a network topology,
where V is the set of nodes and E is the set of links. The origin and destination nodes are
denoted s and d, respectively. The number of QoS measures are denoted by m. Each link
is characterized by an m-dimensional link weight vector, consisting of m nonnegative QoS
weights as components. Stochastic QoS weights are represented by a probability distribution
function. Deterministic QoS weights are represented by a constant value. QoS measures
can be classified into additive (e.g. cost, delay), concave (e.g. bandwidth, policy flags) or
multiplicative (e.g. loss). In case of an additive deterministic measure, the QoS value of a
path is equal to the sum of the corresponding weights of the links along the path. In case
of an additive stochastic measure, the QoS value of a path is equal to the mathematical
convolution of per-link QoS distributions. For a concave measure, the QoS value of the path
is the minimum (or maximum) link weight along that path. A multiplicative measure can be
transformed into an additive measure by taking the logarithm. In general, concave measures
can easily be dealt with by pruning from the graph all links that do not satisfy the requested
QoS constraint. Additive measures cause more difficulties.

Definition 1: Multiconstrained path (MCP) problem: Consider a network G(V,E).
Each link (u, v) ∈ E is associated with m additive weights wi(u, v) ≥ 0, i = 1, . . . ,m. Given
m constraints Li, i = 1, . . . ,m, the problem is to find a path P from s to d such that:

wi(P )
def
=

∑

(u,v)∈P

wi(u, v) ≤ Li
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for i = 1, . . . ,m. A path obeying the above condition is said to be feasible. Note that there
may be multiple feasible paths between s and d. A modified (and more difficult) version of
the MCP problem is to retrieve the shortest “length” path among the set of feasible paths.
This problem is known as the multi-constrained optimal path problem, and is attained by
adding a second condition on the path P definition 1: l(P ) ≤ l(Q) for any feasible path Q

between s and d, where l()̇ is a path length (or cost) function.

2.3 Burst and packet layer

2.3.1 Packet scheduling

The routers are assumed to be non-blocking, i.e when packets arrive at an input link, they
can be routed directly to the appropriate output links without switching conflicts. Packet
destined for different output links do not interfere with each other, and queueing occurs only
at the output ports of the router. The service disciplines deployed at the output links allocate
three types of resources: bandwidth (which packets get transmitted), promptness (when those
packets gets transmitted) and buffer space (which packets gets discarded). The bandwidth,
promptness and buffer allocation policy affects, in turn, the QoS parameters loss, delay, jitter
and throughput.

The packet scheduling schemes deployed at the output links at the routers must be able to
support multiple service classes. Possible schemes include First-Come-First-Served (FCFS),
Strict Priority (SP), Weighted Fair Queueing (WFQ), and Earliest Deadline First (EDF)
[213].

FCFS, SP, WFQ, and EDF provide long-term bandwidth guarantees. However, the WFQ
scheme has the advantage of also giving a short-term bandwidth guarantee, given by the class
weight, to each class. The isolation means that less jitter is introduced in the output packet
stream.

FCFS, SP and WFQ are known to be suboptimal in comparison to EDF scheduling, for
both deterministic and statistical end-to-end guarantees [180]. To implement EDF a complex
sorting mechanism is required [181]. PGPS is often preferred over EDF due to its simplicity.
However, optimal GPS scheduling requires dynamic re-synchronization of bandwidth weights
which is considered costly in switches of today [180].

The ideal GPS scheme assumes packets are infinitesimally divisible and that the server can
serve multiple packets simultaneously. The WFQ scheme has a server that serves the packets
from the backlogged sessions in the order of service completion under the GPS scheme, or
equivalently, bit-by-bit round robin. For the WF2Q discipline, the server does not consider
all the backlogged packets; rather it considers only those packets that have already started
service, and possibly finished, under GPS. WF2Q is the most fair packet-by-packet scheduler
known.

In the WFQ and WF2Q disciplines, computing the tag for selecting the next packet to be
transmitted may be too complex for high speed networks. The Self-Clocked Fair Queueing
(SCFQ) and Start-Time Fair Queueing (SFQ) are approximate methods computing such a
tag in an simple but less fair manner [213].

In Class Based Queueing (CBO) the priority level of each packet selects a dedicated
scheduler which can be of any type. Floyd and Van Jacobsen used a modified deficit version
of Weighted Round Robin (WRR) [65], while Millet and Mameri used WFQ [120].

Parekh and Gallager analyzed the worst case delay in an network with PGPS schedulers
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and leaky-bucket constrained session flows [161, 162]. The worst case end-to-end delay was
found to be a sum of per-link delay metrics. Quantiles of the end-to-end delay distribution, for
statistical delay and jitter guarantees, can be computed by convolution of per-link queueing
delay distributions.

2.3.2 Buffer allocation

There are basically three types of buffer allocation schemes [84]; complete partitioning (CP),
complete sharing (CS), and partial sharing (PS). It has been shown that, e.g. [104], under a
relatively balanced input condition, the CS scheme can acheive a lower blocking probability
than the CP scheme. When the inputs are unbalanced, however, the buffer space may not
be efficiently used by the users. The PS scheme provides a good trade-off between buffer
utilization and loss probabilities among the users.

2.4 Modeling of burst traffic

Recent studies of high-quality, high-resolution traffic measurements have revealed a new phe-
nomenon with potentially important ramifications to the modeling, design, and control of
multi-service networks. These include an analysis of hundreds of millions observed packets
over an Ethernet LAN in a R & D environment at Bellcore [123], an analysis of few millions
of observed frame data generated by VBR video services [23]. In these studies, the packet
arrival process appears to be statistically self-similar.

A self-similar (or fractal) phenomenon exhibits structural similarities across a wide range
of time scales. In the case of packet traffic, self-similarity is manifested in the absence of
natural length of a burst: at every time scale ranging from a few milliseconds to minutes to
hours, similar-looking traffic bursts are evident.

Taqqu, Willinger and Sherman showed in [186] that the superposition of many ON/OFF
sources whose ON periods and OFF periods exhibit the Noah effect (i.e. have high variability
or infinite variance) produces aggregate network traffic that features the Joseph effect (i.e. is
self-similar or long-range dependent). The superposition converges after scaling to fractional
brownian motion (FBM), as the number of users tends to infinity.

3 QoS evaluation

3.1 Link QoS models

The fluid flow queueing model captures the behavior of burst scale congestion. Hence, perfor-
mance measures derived from the fluid flow queueing model are accurate in the case of large
buffers. For smaller buffer sizes, the queue analysis should be performed assuming Markov-
modulated Poisson process (MMPP) packet arrivals. The MMPP queueing model captures
the behavior of both packet and burst scale congestion.

The original fluid flow model for the FCFS queue with constant service rate was proposed
by Kosten [109] and further developed by Anick, Mitra and Sondhi [5]. The model has been
extended to handle producers and consumers coupled by a buffer by Mitra [143], rate-based
congestion control by Elwalid and Mitra [55], service priorities by Elwalid and Mitra [57],
Kulkarni and Gautam [116], loss priorities by Elwalid and Mitra [56], and GPS scheduling by
Presti, Zhang, and Towsley [169].
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The tradional assumption in fluid flow models is exponentially distributed activity periods.
Recently, a fluid flow model for the FCFS queue with heavy-tailed activity-period distributions
was proposed Boxma and Dumas [29]. Borst et al. [28], Jelenkovic et al. [97], Pereira et al.

[166] and Kotopoulos et al. [110] analyzed the GPS system fed by heavy-tailed ON/OFF
fluid sources.

Nagaraja, Kurose and Towsley [118] and Baiocchi et al [18] approximated the superposed
arrival process by a two-state MMPP. Nagaraja, Kurose and Towsley calculated the MMPP
parameters by matching of statistical moments. Baiocchi et al. applied a method called
asymptotic matching to obtain the MMPP parameters. Both papers analyzed the multiplexer
performance using a MMPP/D/1/K queueing model.

3.1.1 End-to-end QoS models

Lelarge et al. derived results on the asymptotic tail distribution of end-to-end delay in
networks of queues with self-similar (FBM) cross traffic [129].

Approximative results for the packet delay variation are outlined by Korpeoglu et al. [108].
Ying et al. analyzed the change in burstiness as the flow traverses multiple hops. The

performance distortions at each node were found the be negibly small: around 1% for mean
delay and 5 % for overflow probability [208].

3.2 Grade of Service models

3.2.1 End-to-end GoS models

End-to-end GoS models for loss networks operating under Least Loaded Routing (LLR) or
Markov Decision Process (MDP) routing, with Poisson flow arrival processes to the OD pairs,
and exponentially distributed flow service times, have been proposed in [40, 70, 170] and [52],
respectively. The end-to-end GoS measures are obtained by solving a set of Erlang fixed-
point equations, also called reduced load approximation. Besides the flow traffic model and
the network capacity model, the routing algorithm strongly affects the end-to-end GoS model.

4 CAC and routing

4.1 MDP-based QoS routing

State-dependent link costs can be determined from a Markov decision process (MDP) model
of the the flow-level behavior of each link. With MDP-derived costs, the network is able select
hop-by-hop or explicitly routed paths that maximize the long-term operator revenue.

MDP routing has recently been applied to per-flow QoS routing with on-demand flow set
up and/or delayed flow set up. Lea evaluated MDP-based QoS routing for on-demand flow
set up for IntServ domain networks [124]. Chang studied MDP-based QoS routing for on-
demand flow set up for ATM networks with three level PNNI hierarchy [35, 36]. We analyzed
MDP-based QoS routing with mixed on-demand and delayed flow set up [154, 155].

In summary, MDP-based QoS routing works as follows. First, the CACQoS function finds
the set of feasible paths that satisfies the end-to-end QoS and administrative constraints of
the requested flow class. Second, the routing function selects a minimum MDP cost path for
the new flow. Third, the CACGoS function accepts (rejects) this choice if the minimum path
cost is smaller (larger) than the expected reward from serving this flow.
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Numerical experiments carried out by several auhors show that MDP-based routing gives
higher average revenue rate than Least Loaded Routing (LLR), Event Dependent Routing
(EDR), and sequential routing [47].

MDP-based routing is not implemented in any real network around the world, which is
explained by the modest improvement of average revenue rate, and the theoretical complexity
of algorithm.

To implement MDP-based routing it makes sense to have a bandwidth broker (BB) dis-
tributed among the edge routers. The origin (edge) node is connected to a set of destination
(edge) nodes via a routing network. The state of this routing network provides the basis
for generic (preliminar) CAC and routing decisions for new calls between the OD-pairs. Sig-
nalling is then done along the chosen network path to check the actual state of each link
(actual CAC).

It is desirable that the state of the routing network is known with resonable accuracy.
The update of link states can be done periodically or driven by some event process. Paths
which are lightly loaded can be evaluated as feasible without exact state information; as paths
become more loaded the decisison becomes more critical and the state update frequency should
increase.

5 Network design

5.1 Bandwidth and buffer management

Optimal weight selection for GPS schedulers under statistical loss, overflow and/or delay
guarantees was studied by Kumaran et al. [117], Elwalid et al. [58], Lieshout et al. [131],
Lapiotis et al. [121], and Lee et al. [128]. Optimal weight selection under deterministic delay
guarantees was considered by Szabo et al. [185], Georgiadis et al. [69], Panagakis et al. [160].
GPS weight selection in CDMA networks taking fading and inter-cell interference into acount
was studied by Xu et al. [199, 200].

Optimization of buffer management by complete sharing based on virtual partitioning has
been studied by Lapioties et al. [121] for the GPS scheduler, and by Wu et al. [196] for the
FCFS scheduler.

5.2 Network topology

The second function in network design is the design of the topological structure of the network,
i.e. where to place the nodes and how to interconnect them.

Harms et al. [80] studies the global topological reconfiguration problem for physical net-
works. For ATM and MPLS physical networks in most cases the result of the topological
design phase will lead to a partly or fully meshed backbone network structure.

Anjali et al. have proposed a successive topology reconfiguration policy for the VN MPLS
network [6]. Srikitja et al. analyze the global topological reconfiguration problem for VNs
over MPLS [182].

5.3 Network link capacities

Groskinkky et al. propose a method for successive capacity reallocation based on analysis of
a time-dependent loss queueing system [73].
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Global capacity reconfiguration determines, given the network topology, traffic demand
and GoS requirements, the capacities of the physical and virtual network links. The objective
used in design of link capacities in virtual and physical networks can be of several types. Two
common examples are maximization of the average revenue rate and minimization of total
network link cost. The GoS constraints for each flow class are expressed in an absolute or rel-
ative manner. The global capacity reconfiguration task can be formulated as an optimization
problem with non-linear objective function subject to a set of non-linear constraints. The
optimization task requires a model of the network GoS, which besides from the traffic and
capacity model, also depends on the CAC and routing policy.

Results for global capacity reconfiguration have been derived for

• single-service networks under fixed routing and load sharing routing by Kelly [100];

• multi-service networks under fixed routing and load sharing routing by Farago [59] and
Mitra [144, 145];

• single-service networks under least loaded routing by Huberman [86] and Girard [71];

• multi-service networks under MDP routing by Dziong [53];

• multi-service networks under multi-commodity flow routing model by Girard [72].
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[111] K. Krishnan, F. Hübner, “Admission control and routing for multirate circuit-switched traffic”, In Proc.
of 15-th International Teletraffic Congress, ITC’15, Washington, USA, 1997.
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